MEF W128 Draft (R1)

A A

MEF

Draft Standard
MEF W128 Draft (R1)

LSO API Security Profile — Implementer’s Guide

October 2021

This draft represents MEF work in progress and is
subject to change.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
Draft (Rl) following statement: “"Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
Disclaimer

© MEF Forum 2021. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated
with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

¢) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications, or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
Draft (Rl) following statement: “"Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Table of Contents

1 List of Contributing MEMDEIS........cviiiii e 4
2 N] 1 - (0! PSPPSR 4
3 Terminology and ADDIEVIATIONSccuiiiiiiiieice e 5
4 REIEASE INOTES ...ttt bbbttt sttt b e st e st e e 6
5 COMPIANCE LEVEIS ...t 7
6 8 o 18 Tod [] o USSR 7
7 MEF LSO Security ArChiteCTUIE.......ccoiiiiieiieeeee e e 11
7.1 MEF LSO API Security Architecture PrerequUISIteS.........ccovveiieiiieiie i 11
7.2 Supported Authentication Frameworks and their Threat Modelsc.ccocvniiiiiennn, 13
7.3 Consuming Service Provider (SP)-owned Resources from another SPc.cccocu...... 15
7.4 Hybrid Flow Request With Intent Id ..o 18
7.5 Hybrid Grant FIOW Parameters..........coooiiiiiiiiiiieieic s 19
7.5.1 Minimum Conformance REQUIFEMENTS.........cccveieieieeieese et se e se et sresne s 19

8 JWT Security Suite INformation V1.0cccce i 28
8.1 General Guidance for JWT BeSt PraCtiCe..........ccovveieiriiiiniieiie e 29
8.2 JWKS ENUPOINTS. ..ottt bbbttt bbb 29
8.3 General outline for creating @ JWS.........coov oo 29
8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS............. 29
8.3.2 Step 2: FOrm the JOSE HEAUEccveiei ettt st 29
8.3.3 Step 3: Form the payload t0 be SIgNEd..........ccooi i s 30
8.3.4 Step 4: Sign and encode the Payload ... 30
8.3.5 Step 5: ASSEMDIE the JWS ... 30

8.4 General Outline for creating @ JWEcccooieiieiiiie e 31
8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE............. 31
8.4.2 Step 2: Form the JOSE Header of the JWEcccoooi it 32
8.4.3 Step 3: Form the encryption key, initialization vector and AADcccccevievievienecseenieens 33
8.4.4 Step 4: Form the JWE Ciphertext and final JWE ... 34

9 LSO API Payload AUTNENTICITY.......ccooiiiiiieiiiseiee e 34
10 Implementation Guide (NON-NOIMALIVE)ccooveiieiiieiieie e 36
L0.1 OVEIVIBW ..ottt sttt ettt b et s e b e bt st b e et e e nb e e bt e nbeesbeereesbeenbeaneenreas 36
10.2 SPECIfied BENAVIOLciiiiiieieie et 36
10.2. 1 CHENE TYPES ..ttt sttt sttt bbbt bbbt bbb bbbt b bt et ne e 36
KO 1 1 A I 11 T ST 36
10.2.3 ACCESS TOKENSveititieieeieieeie ettt ettt e sttt s e st et e st e et e s e e benbese e be st enenneeneneeneans 37
10.2.4 RETIESN TOKENSottt sttt sttt e e s e teseeene e tesaeeneeneennenne e 37
0T T | T o] T3S 37
10.2.6 AULNOMIZAION COUBS .. .eivieeeiieiieeiie ettt ettt e te et e s e s testeeneentesbesneeneennesse e 37
10.3 NON-SPecified BENAVIONccoiiiiiiiiiiisiieee e 37
0T TS O 1= | A Y 0TSSR 37
O T] 1 A I/ 1 TR 37
10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token).............. 38
10,4 SUCCESS FIOWS......c.eieieiiiiitiee ettt ettt ne et et e et e sbeenbeaneeneeas 38

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 1
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

10.4.1 QuOte API SPECITICALIONcviiviiii e re e 38
10.4.2 Client Credentials Grant Type (OAUh 2.0)......ccoiiiiiiiciiie e 39
10.4.3 OIDC HYDIA FIOW ...oviiieiiceee ettt sttt nbe e 39
10.4.4 HTTP Request and ReSpONSe EXAMPIES.......ccviiiiiiiiieesie e 40
10.5 Edge Cases (NON-NOIMALIVE).......cccoeiiriririieieiesie sttt 45
10.5.1 Buyer Consent Authorization Interrupt With SEHer ... 45
11 RETEIENCES ...ttt bbbt b et b bbbt e e e 45
Appendix A Why Decentralized Public Key Infrastructure? (Informative)..................... 47
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 2
Draft (R1) following statement: “Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

List of Figures

Figure 1 — Example Authentication FIOWccccoviiiiiiiiiiic e 9
Figure 2 — Example Authorization Framework with Federationc.cccceviiiiiiiie s, 10
Figure 3 — MEF LSO Security ArChItECIUIEoiviiiiiieieieee e 15
Figure 4 — HTTP Request — Hybrid Grant FIOW............cccoviieiieiicic e 22
Figure 5 — REQUEST JWS/IWEooii ottt st e e 23
FIgure 6 — 1d_tOKEN RELUMoviiiiiiiiiiee et 23
FIQUIE 7 — ANOTNET RESPONSE......cvieiieitieiieeiestee st ste e e e te et e e e te e esta e te et e aseesaeassesseesseeneesneesreas 24
Figure 8 — Client Credential Type Using Multiple SCOPES.........cccovvviiiiieiiiiiic e 36
Figure 9 — Sample Quote AP1 OAuth2/0IDC Authentication/Authorization Flow..................... 39

List of Tables

Table 1 — Terminology and ADDIEVIATIONSccoiiiiiiiiiiice e 6
Table 2 — Minimum CONFOIMANCE.ccviie et re e 22
Table 3 — 1D Token Claims Detailscccoiiiiiiiiiciieiie s 28
Table 4 — FOrming the JOSE HEAUETooiiieieieeee s 30
Table 5 — Signing the JSON Payload...........ccceieiiiiiiie i 30
Table 6 — Forming the JOSE Header of the JWE ..o 33
TADIE 7 — THE ISSUBT ...ttt ettt e et s e e be e s e e sbe e e nbe e s beeenteesneeaneas 34
Table 8 — Message Payload Request Required EIEMENEScccvevieiieiiiieiiee e 35
Table 9 — Non-Base64 JWT client_aSSertioN..........ccccviuieiieiiie i 40
Table 10 — Single QUOE INTTIALIONviiiiiieee s 41
Table 11 — Non-Base64-encoded Example of the Request Parameter Object..........ccccccevvvveennen. 42
Table 12 — ID TOKEN EXAMPIEccoeiieieiie ettt ae e re e 42
Table 13 — Non-Base64 JWT CHeNt ASSEITION.ccciiiiiiiereeie e 43
Table 14 — Non-Base64 JWT QUOtE SUDMISSIONcoiviiiiiiiiciic et 44
Table 15 — Non-Base64 JWT Quote SUbmMISSION Statuscccovvveviieiiieiiece e 44
Table 16 — Buyer Consent Authorization INtErrUPLIONcccooiiiiiiiiinieee e 45
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 3
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have
requested to be included in this list.

e To be filled out before Letter Ballot

2 Abstract

This document defines the security profile, security approaches and security architecture for LSO
API security using OAuth2 and OIDC within either a centralized or federated identity provider
framework.

The intended audience of this document is senior IT security professionals in the telecom industry.

The document first defines the LSO API security architecture and conformance requirements to
that architecture. The standard then defines the following JSON security components:

e JWT Best Practices for LSO API Security

e JWKS Endpoints for cryptographic signatures and their verifications

e Structure and conformance requirements for JWSs and JWEs as used in the LSO API
Security architecture

e LSO API Payload Authenticity

Lastly, this document lays out a non-normative implementer’s guide for applying the LSO API
security profile and architecture to LSO APIs’ calls in the following order:

e Specified and Unspecified LSO API Behavior
e Success flows for LSO API authentication and authorization
e A brief discussion of common implementation edge cases

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 4
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to
terms are found in other documents. In these cases, the third column is used to provide the
reference that is controlling, in other MEF or external documents.

In addition, terms defined in MEF 10.4 [20] are included in this document by reference and are
not repeated in the table below.

Term

Definition

Reference

Account Information Service
Providers

Account Information Service Providers are
authorized entities to retrieve account data provided
by service providers.

Open Banking [25]

AISP Account Information Service Provider Open Banking [25]
API Application Program Interface MEF 55.1 [21]
Application Program A software intermediary that allows two applications | MEF 55.1 [21]
Interface to talk to each other.

DID Decentralized Identifier W3C DIDs [32]

Decentralized Identifier

A globally unique persistent identifier that does not
require a centralized registration authority and is
often generated and/or registered cryptographically.

W3C DIDs [32]

FAPI

Financial-grade API

OpenID FAPI [31]

Financial-grade API

An industry-led specification of JSON data schemas,
security, and privacy protocols to support use cases
for commercial and investment banking accounts as
well as insurance and credit card accounts.

OpenID FAPI [31]

JavaScript Object Notation

A lightweight data-interchange format.

ECMA JSON [2]

JOSE

JSON Object Signing and Encryption

IANA JOSE [3]

JSON

JavaScript Object Notation

ECMA JSON [2]

JSON Web Encryption

Encrypted content represented using JSON-based
data structures.

IETF RFC 7516 [14]

JSON Web Key Set

A set of keys containing the public keys used to
verify any JSON Web Token (JWT) issued by the
authorization server and signed using an approved
signing algorithm such as the recommended RS256
(RSA signature with sha-256 hashing).

Auth0 JWKS [1]

JSON Web Signature

Represents content secured with digital signatures or
Message Authentication Codes (MACS) using JSON-
based data structures.

IETF RFC 7515 [13]

JSON Web Token An open, industry standard method for representing IETF RFC 7519 [16]
claims securely between two parties.

JWE JSON Web Encryption IETF RFC 7516 [14]
JWKS JSON Web Key Set Auth0 JWKS [1]
JWS JSON Web Signature IETF RFC 7515 [13]
JWT JSON Web Token IETF REC 7519 [16]
LSO Lifecycle Service Orchestration MEF 55.1 [21]

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 5

Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Term Definition Reference

OAuth2 OAuth 2.0 focuses on client developer simplicity IETF RFC 6749 [11]
while providing specific authorization flows for web
applications. The OAuth2.0 Framework is defined in
RFC 6749

OIDC OpenID Connect OpenlID Connect [28]

OpenlID Connect

A simple identity layer on top of the OAuth 2.0
protocol. It allows Clients to verify the identity of the
End-User based on the authentication performed by
an Authorization Server, as well as to obtain basic
profile information about the End-User in an
interoperable and REST-like manner.

OpenlD Connect [28]

Relying Party

An OAuth 2.0 Client application that requires user
authentication and claims from an OpenID Connect
Provider.

OpenlD Connect [28]

Representational State
Transfer

An architectural style for distributed hypermedia
systems

Fielding 2000 [4]

REST

Representational State Transfer

Fielding 2000 [4]

RP

Relying Party

OpenID Connect [28]

Software Statement
Assertion

A JSON Web Token (JWT) containing client
metadata about an instance of client software. This is
used for OpenlD Dynamic Client Registration.

IETF SSA [8]

Security Domain

A domain that implements a security policy and is
administered by a single authority.

CNSSI 4009 [3]

SSA

Software Statement Assertion

IETF SSA [8]

Third Party Provider

Account Information Service Providers

Open Banking [25]

TPP

Third Party Provider

Open Banking [25]

Trust Domain

Security Domain

This document

VC

Verifiable Credential

W3C VCDM [33]

Verifiable Credential

A tamper-evident credential that has authorship that
can be cryptographically verified.

W3C VCDM [33]

4 Release Notes

Table 1 — Terminology and Abbreviations

This draft incorporates the changes from Call for Comments Ballot #1. No known issues remain,
however some of the standards referenced are currently in development at MEF. It is not expected
they will change in such a way as to materially affect this document. Call for Comments Ballot #2
is currently open and may introduce changes.

The W3C Decentralized Identifier standard is not yet ratified — see Editor Note 1:

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 6
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

5 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119, RFC
8174) when, and only when, they appear in all capitals, as shown here. All key words must be in
bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for
required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)
are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or
OPTIONAL) are labeled as [Ox] for optional.

Editor Note 1: The W3C Decentralized Identifier standard is currently in the Recommended
status before final ratification in 2021. This means the standard in its version 1
will no longer be altered before ratification. Even though the standard may
change when it reaches final ratification, it will not impact the use as a reference
within this document, as there is no specific functionality dependency.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that MUST be
followed if the condition(s) following the “<” have been met. For example, “[CR1]<[D38]”
indicates that Conditional Mandatory Requirement 1 must be followed if Desirable Requirement
38 has been met. A paragraph preceded by [CDb]< specifies a Conditional Desirable Requirement
that SHOULD be followed if the condition(s) following the “<” have been met. A paragraph
preceded by [COc]< specifies a Conditional Optional Requirement that MAY be followed if the
condition(s) following the “<” have been met.

6 Introduction

In a now predominantly digital world, the Telecom industry is not only faced with exponential
new business opportunities crossing and blurring traditional lines between industries, but also
facing exponential digital threats both from outside as well as within security perimeters as the
recent Solar Winds and Kaseya security breaches impacting thousands of companies and dozens
of governments amply demonstrate. Cyber criminals, often operating under the direction of state
actors, have demonstrated their rapid adaptability to deployed counter measures. This requires that
companies do both advanced threat protection and regular cyber security “blocking and tackling”
within and across enterprise trust boundaries.

MEF has been leading the industry in B2B automation standards, helping companies to take out
operating costs and allowing them to focus on the revenue side of the business. However, the
current B2B business automation standards as expressed through the LSO APIs are lacking basic
cyber security standards — cyber security “blocking and tackling” — and advanced threat protection.
Through the W118 project to establish a Zero Trust Framework standard, MEF is greatly
supporting its members in establishing advanced threat protections for their environments. In fact,
US President Biden has called out the implementation of Zero Trust Frameworks as mandatory for

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 7
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

US agency systems in June of 2021, highlighting the enormous attention placed on Zero Trust
Frameworks on a global scale.

One key prerequisite for a Zero Trust Framework is the implementation of normal cyber security
“blocking and tackling” standards as foundational building blocks such as authentication and
authorization across enterprise trust boundaries within the context of other MEF standards such as
LSO APIs.

Therefore, this standard sets out to provide such context-specific cyber security “blocking and
tackling” by providing specific cyber security functional requirements and mechanisms that help
to produce consistently secure LSO API based communications between organizations across trust
boundaries. This standard’s aim is to gain alignment on the detailed LSO API security mechanisms
for interface reference points including Sonata, Interlude, Cantata and Allegro.

This document provides a baseline for authentication (verifying the identity of a service requester)
and authorization (verifying the allowed scope of access to service provider resources of a service
requester) across enterprise trust boundaries between APl consumer and provider, the threat
models that are addressed, and a list of supported Identity frameworks that will integrate with
access policies defined in this document.

Note that the intended audience of this document are senior IT security professionals in the telecom
industry.

The scope of this document is to address the following security areas for LSO APIs:

Authentication Frameworks and their threat models
Identity Authentication

Access Claims Requirements

Authorization Framework

Access Claims Processing

This standard covers OpenAPI/REST APIs. RestConf and NetConf APIs are out of scope.

Furthermore, this standard will not address the lifecycle (provisioning/removal/updates) of
identities and claims (access control policies).

First, and by way to set context, accessing, requesting, and delivering a service between a Buyer
and a Seller via LSO APIs always follows the request-response schema; the Buyer requests and
the Seller responds at each step of LSO API access, request, and delivery. Note, that this document
intentionally does not specify whether a Buyer and a Seller are within the same or a different
organization. This document assumes that a Subject and a Seller are in different Trust Domains
and, therefore, must apply the LSO API Security Framework to all services crossing trust domains
irrespective if they are inter- or intra-organizational. A Trust Domain in the context of this
document is equivalent to a Security Domain as defined in CNSSI 4009 [3].

A Trust Domain is a security domain that implements a security Policy and is administered by a
single authority. An example of a Trust Domain is an Amazon Web Services Security Zone.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 8
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Second, there are three levels of LSO API security across Trust Domains, which are delineated at
a high-level below:

1. Transport layer security through HTTPS as described in OAuth2 using OAuth2's
OpenAPI definitions — secure communication channel between Buyer and Seller.

2. LSO API access security through the endpoint providing LSO API authentication and
authorization — answering the question: Am | allowed to access a specific environment?

3. Buyer—Seller LSO API security through function-specific scopes and associated
authentication and authorization policies — Answering the question: Am I allowed to
access specific functions/resources in a specific environment and do specific things with
that function/resource?

Transport security is considered the 1% level of security and will be aligned with the minimum
requirements of the standards referenced in this document — OAuth2, OpenID Connect (OIDC),
UK Open Banking and W3C Decentralized Identifiers and W3C Verifiable Credentials — and not
further discussed in this document.

This document will provide MEF-specific standards for the 2" and 3" level of security.

To provide further context for the subsequent discussions, the document provides concrete
examples of what is meant by the 2" and 3" level of security as defined above in the two figures
below. Since the 1% level is out of scope for this document, this document does not provide an
example.

Figure 1 below outlines an example of LSO API Authentication, the 2" level of security.

1. Client presents identity to APl Gateway

API| Security General Architecture - Authentication
2. APl Gateway consults with Federated IAM

Note: Transport security relies on HTTPS Federated
as prescribed by OAuth2 1AM 5 ts - :
or Provider IAM to verify identity and claims

Authentication and Authorization are independent 3. 1:oken is providelzl to Client upon verification of
of Transport security implementations Claims (Authorization)

Provider
1AM

Provider ,
‘ Provider
Client 0SS API P
https://url:port Gateway http://url:port

0 = {URL}

f1 = {URL,End_Points}
Figure 1 — Example Authentication Flow

The dataflow in Figure 1 is composed of the following steps:

e Buyer’s client application presents its identity to the Seller API Gateway

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 9
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

e The Seller’s API gateway consults with its internal and/or federated Identity providers to
verify the identity and claims presented by the client application
e Upon verification of claims and identity, a token is provided to the client application.

Figure 2 below outlines an example of Buyer—Seller LSO API security through function-specific
scopes and associated authentication and authorization policies, 3" level of security.

APl Security General Architecture - Authorization
1. API Gateway verifies the requested endpoint with
Note: Transport security relies on HTTPS Federated Fedferated IA:“ or Provider IAM b K
as prescribed by OAuth2 1AM 2.1 approved, API Gateway generates a bearer token
to Client OSS.

Authentication and Authorization are independent 3. Client identity will be sent through the API gateway to the

of Transport security implementations Provider LSO API endpoint

Provider
1AM

Provider ,
Provider

Client 0SS API

https://url:port Gateway http://url:port

f0 = {URL}

t

f1 = {URL,End_Paints}) v)
--------- =p» 2 = {URL,End_Points, Functions}

Figure 2 — Example Authorization Framework with Federation
The dataflow in Figure 2 is composed of the following steps:

o Seller’s API Gateway verifies whether the endpoint access request is permitted for the
Buyer’s identity presented in the request

e If the request is allowed, the API gateway generates a bearer token and provides it to the
Buyer’s client application

e The client’s identity is passed through the API gateway to the seller’s LSO API endpoint

The document’s scope is limited to the definition of the schema of the JSON Web Token (JWT)
used to perform authentication of a Buyer and the authorization that said Buyer has to the LSO
API endpoint the Buyer is interacting with. The treatment of the response payload sent by the
Seller to the Buyer, or from the Buyer to the Seller, is not covered in this document.

Payload security is part of the Zero Trust framework defined in MEF W118 [23]. It should be
implemented to ensure both parties use verifiable means to protect the integrity of data being
exchanged.

Figure 2 depicts the data flows between Buyer and Seller to obtain an Access (Bearer) token, and
how the Bearer token is used to access protected resources.

The document is structured in the following way:

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 10
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

1. MEF LSO Security Architecture in Section 7 with
a. Adiscussion on MEF LSO API Security Architecture Prerequisites
b. The delineation of Supported Authentication Frameworks and their threat models
c. An outline of how to consume Service Provider (SP) owned Resources from another
Service Provider (SP)
d. A detailed discussion of the recommended Hybrid Grant Flow Request with Intent Id
e. A discussion of the Hybrid Grant Flow Parameters
2. JWT Security Suite Information v1.0 in section 8 with
a. General Guidance for JWT Best Practice
b. A brief discussion of JSON Web Key Sets (JWKS) Endpoints.
c. General outline for creating a JSON Web Signature Token (JWS) to be used in LSO
API Security Architecture.
d. General Outline for creating a JSON Web Signature Token (JWE), as an alternative
to a JWS, to be used in LSO API Security Architecture.
3. A non-normative Implementation Guide in Section 10 with
a. Specified and Non-specified Authentication and Authorization behavior
b. Detailed Success Flows and examples for LSO API Authentication and Authorization
c. Common Implementation Edge Cases

7 MEF LSO Security Architecture

This section details the MEF LSO Security Architecture. This document discusses the following
aspects in sequence:

1. Prerequisites for utilizing the MEF LSO security

2. Supported authentication frameworks and the threat models they address

3. MEF LSO API security architecture workflows, data models and JSON security
information

4. MEF LSO API security model examples & exceptions

7.1 MEF LSO API Security Architecture Prerequisites

Uniqueness and security of identifiers utilized in LSO APIs is particularly important to
unambiguously identify Service Providers (SPs) and the Third-Party Providers (TPPs) as their
delegates interacting with and through LSO APIs and to keep those interactions secure.
Furthermore, and to facilitate automation and real time interactions within and through LSO APIs,
discovery of identifiers and an ability to resolve them to the underlying public keys that secure
them without having to rely on a trusted 3" party is also critical.

This document assumes several things to be in place before the MEF LSO API security workflows
can successfully commence. We express them in this minimal set of prerequisites below:

[R1] The SP or its TPP requesting access to a SP LSO APl MUST have a unique
identifier.

[R2] Any unique identifier MUST be associated with a set of public keys.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 11
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

This allows an SP to prove that it controls, and can, thus, authenticate the unique identifier utilized
in the LSO API Security context of this document without a verifying 3rd party.

[R3] Any unique identifier MUST be resolvable to its associated public keys used
for cryptographic authentication of the unique identifier.

This allows an SP to access the public keys used in the unique identifier authentication
independently of the SP or TPP requesting access or any other 3rd party.

[D1] Any unique identifier SHOULD follow the W3C DID Core specification.

This requirement supports the self-issuance of unique identifiers that allow for cryptographically
verifiable non-repudiation. Note that the usage of commonly used public key infrastructure (PKI)
based on X.509 digital certificates is permissible. However, the adoption of W3C DIDs is
encouraged based on the threat models to traditional PKI1 as outlined in Appendix A.

After having discussed the minimal set of requirements on identifiers utilized in LSO APIs, it is
important to discuss how these relate to identity and claims about facts relevant to SPs, also called
credentials.

[R4] A unique identifier utilized with LSO APIs MUST be linked to a Legal Entity
of the service requesting SP or its TPP through a cryptographically signed,
cryptographically verifiable, and cryptographically revocable credential based
on the public keys associated with the unique identifier of the credential issuer.

In the context of this document, a Legal Entity is an individual, organization or company that has
legal rights and obligations.

This document makes no assumptions as to how a legal identity establishing credential is created,
which identity credential issuers are mutually acceptable between Buyer and Seller and how these
identity credentials are exchanged to establish mutual trust across enterprise trust boundaries to
perform authentication and authorization operations for LSO APIs between Buyer and Seller.

Note that credentials utilized with LSO APIs may be self-issued. The acceptance of self-issued
credentials is up to the SPs that need to rely on the claim(s) within a self-issued credential.

[R5] The unique identifier of the Legal Entity of the TPP/SP MUST be the subject
of the credential.

[R6] The unique identifier of the issuer of the Legal Entity credential utilized in LSO
APIs MUST have a credential linking the unique identifier of the issuer to an
Entity accepted by the SPs.

[D2] The credential SHOULD follow the W3C Verifiable Credential
specification.

[R7] A credential utilized with an LSO APl MUST itself have a unique and
resolvable identifier.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 12
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Note that the unique and resolvable identifier of a credential does not have to be associated with
any cryptographic keys.

[R8] If present, the status of a credential utilized within an LSO APl MUST be
discoverable by a party verifying the credential, the credential verifier.

In the context of this document, a credential status signals if a credential has been revoked or not,
and a credential verifier is defined per the W3C Verifiable Credential Standard [33].

[D3] A credential utilized with an LSO APl SHOULD be discoverable by either
SP.

[R9] The presentation of a credential utilized with a LSO API MUST be
cryptographically signed by the presenter of the credential, also known as the
credential holder.

See the W3C Verifiable Credential Standard for a definition of credential holder.

[R10] If a credential holder is a SP, the holder MUST have a unique identifier that
has been established within the LSO API security context the holder operates
in.

This document makes no assumptions about existing business relationships between SPs. It is in
the purview of the relying party whether the above prerequisites are sufficient or whether
additional requirements need to be fulfilled. An (OIDC) Relying Party is an OAuth 2.0 Client
application that requires user authentication and claims from an OpenlD Connect Provider.

7.2 Supported Authentication Frameworks and their Threat Models

In this standard, OAuth 2.0 will be the primary framework for API Security for MEF LSO APIs
augmented by both centralized and federated Identity Provider frameworks utilizing JSON Web
Tokens (JWTSs) [16] for authentication and resource authorization claims following the OpenlD
Connect standard framework (OIDC) [28]. OAuth 2.0 itself is a framework which can be deployed
in many ways. Therefore, and to securely use the OAuth 2.0 framework, a security profile must
exist by which Service Providers (SPs) or their ThirdParty Service Providers (TPPs) are certified
to have correctly configured their clients and servers. TPPs act as a SP authentication service
provider when the SP has outsourced its authentication services to a vendor.

To contextualize and motivate the usage of OAuth2 together with OIDC and the recommendations
on authentication flows made, this document briefly discusses the threat model that OAuth2 and
OIDC are intended to address. The threat model for OAuth2 and OIDC is documented in IETF
RFC 6819 [12]. This document will not detail the individual attack vectors but rather detail the
components of the attack surface and the assumptions on the attacker.

That basic architecture and, thus three main attack surfaces, are:

e Authentication/Authorization Servers with elements such as
o usernames and passwords
o client identifiers and secrets

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 13
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

client-specific authentication and authorization refresh tokens
client-specific access tokens
HTTPS certificates or public keys or both
per-authorization process data such as redirect URIs
e Resource Servers
o user data (out of scope)
o HTTPS certificates or public keys or both
o either authorization server credentials or authorization server shared secret/public key
o access tokens
e Client
o clientid (and client secret or corresponding client credential) which could be a W3C
DID
o one or more refresh (possibly persistent) tokens and access tokens
o atypically transient per end user or other security or delegation related context
o trusted certification authority (CA) certificates (HTTPS) or W3C Verifiable
Credentials
o per-authorization process data

o O O O

Note that a resource server typically has no knowledge of refresh tokens, user passwords, or client
secrets to enable separations of concern.

The assumptions on a potential attacker are as follows:

e Full access to the network between the client and authorization servers and the client and
the resource server), respectively (Buyer and Seller or vice versa). The attacker may also
intercept any communications between Buyer and Seller. However, the attacker is not
assumed to have access to communication between the authorization server and resource
server since this is within the trust boundary of Buyer and Seller. If an attacker gains
access to either trust domain, this framework no longer applies. To mitigate such a
scenario, a Zero Trust framework should be implemented.

e An attacker has unlimited resources to mount an attack.

e Two of the three parties involved in the OAuth protocol may collude to initiate an attack
against the 3rd party. For example, the client (e.g. Buyer) and authorization server (e.g.
Seller) may be under control of an attacker and collude to trick Buyer or Seller to gain
access to resources.

Given the data on the above three components we can now detail the full attack surface across all
components:

Client Tokens such as Obtaining Access and Refresh Tokens or client secrets
Authorization Endpoints such as password phishing

Token Endpoints such as eavesdropping access tokens

Obtaining Authorization from:

o Authorization ‘code’

o Implicit Grants

o Resource Owner Password Credentials

o Client Credentials

e Refreshing of Access Tokens such as Refresh Token Phishing

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 14
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
e Accessing protected resources such as Replay of Authorized Resource Server Requests

IETF RFC 6819 [12] also lists mitigation strategies against attacks on those attack surfaces such
as limiting the length of validity and number of uses of an Access Token.

7.3 Consuming Service Provider (SP)-owned Resources from another SP

TPP {SP) ------ Application Process ---
M——Access Permissions

Register Application---
« |[—554 Delivery

TPP (SP) Application

Sp
Application

de ==

- = -Refurm puthorization Co

’ {.’ -: 5 -;-_ .:‘1.'_ .1. “.\
* If \ n 2} L o] - ';‘
o J : 8 & % 3 .
Step 3: SP
Step 1: SP Step 2: SP L . . Step 5: SP
{RegislerEndDoint} [Staging AP } [Authorization } { Step 4: SP Token Endpoint } {

Resource Service

Figure 3— MEF LSO Security Architecture

For context setting and completeness this document reiterates the typical OAuth2 authentication
and authorization process for SP resources such as LSO APIs incorporating OpenlD Connect
Request Objects as JWTs containing relevant Identity Provider Information as depicted in Figure
1.

Step 1: SP Register Endpoint

A TPP/SP submits a SSA through an OAuth2 client registration request to a known API endpoint
of a SP that controls client registration for an LSO API as a resource to be accessed by the TPP/SP.
A Software Statement Assertion (SSA) [8] is a JWT containing client metadata about an instance
of TPP/SP client software. This is used for OpenID Connect Dynamic Client Registration. The
SSA is used by an OAuth client to provide both informational and OAuth protocol-related
assertions that aid OAuth infrastructure to both recognize client software, e.g., signed release hash

and determine a client's expected requirements when accessing an OAuth-protected resource, e.g.,
required cryptographic algorithms to be used.

If the SSA meets the OAuth2 requirements of the target SP, either Buyer or Seller, the target SP
issues client credentials.

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the

Page 15
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 16
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
Step 2: SP Staging API

When a TPP/SP wants to access an LSO API either once or repeatedly. the TPP/SP submits an
intent to perform a specific LSO API action and why the client wants to perform such an action to
a known API endpoint of a SP. If the request is authenticated, the client will receive a ticket back
which is necessary to be presented in the next step. A ticket could for example be simply an Id
such as an Intent Id. This step is recommended to provide very specific authorizations which might
be required for regulatory reasons such as for payment. A ticket functions just like a queue number.
Details of a ticket object and its definition are given in the Open Banking standard [26] and will
not be repeated here.

Step 3: SP Authorization Endpoint

To receive an authorization token for the LSO API (not the specific function), the TPP/SP submits
the ticket from step 2 in an authorization request to a known API endpoint of a SP. And if the
TPP/SP is both authenticated and the ticket validated, the SP providing the LSO API will return
an authorization code. This authorization code will be used to obtain the fine-grained authorization
to the desired function.

Step 4: SP Token Endpoint

Once an authorization code to access the domain of the LSO API has been obtained by the TPP/SP,
the TPP submits a token request to a known API endpoint of a SP containing the client credential
and the authorization token. If there is an existing authorization policy for the LSO API associated
with the client credential at the token endpoint, an authorization token — that the TPP/SP can access
a very specific LSO API functional endpoint and may or may not include specific fine-grained
authorizations and cryptographic material — and a resource token — that the TPP/SP can access a
specific resource, typically a specific server or specific serverless function and may or may not
include specific resource metadata and cryptographic material — are issued to the TPP/SP. Note
that if the original intent was to access the LSO API repeatedly the authorization and resource
tokens will be time bound and need to be refreshed. Otherwise, they are typically single use only.

Step 5: SP Resource Server

The TPP/SP can now finally access the detailed LSO API function on the resource server through
a known API endpoint of a SP, by calling a single function LSO API endpoint on the resource
server in a request containing the authorization and resource tokens and the LSO API endpoint
payload. If the resource server validates the authorization token and the resource token, the LSO
API request is executed, and the function specific response is generated and sent to the TPP/SP.

There are two possible operating models that this document needs to accommodate, see figure
above:

e Model 1: An SP, as Buyer or Seller, is operating its own authentication and resource
infrastructure. In this model the TPP is the SP.

e Model 2: An SP, as Buyer or Seller, outsourced/delegated either its authentication or
resource infrastructure or both to a 3rd party, a TPP. In this model the TPP is different
from the SP owning the resource.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 17
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Note that as a prerequisite to Step 1: SP Register Endpoint, the SP receiving the registration
request needs to have a notion of the TPP/SP and its identity submitting the request.

Furthermore, since SPs TPP/SP client requirements are SP specific, these requirements are out of
scope of this document as well. This means that for Step 1, this document simply refers to the
OpenID Connect Dynamic Client Registration standard, and there in particular Section 3.1: Client
Registration Request [28]. It is recommended that SPs follow the OpenID Connect Discovery
standard [30] to publish their OAuth2 client requirements.

Below, Model 2 is discussed because it is more general, and, where required, this document will
highlight any adjustments to Model 2 to accommodate Model 1.

See the OpenID Connect Core standard, section 6 [28] for necessary OIDC flow details not
discussed below.

The OpenID Connect Request object in the above figure uses the same claims’ object for
specifying claim names, priorities, and values. However, if the request object is used, the claims
object becomes a member in an assertion that can be signed and encrypted, allowing the SP to
authenticate the request directly (Model 1) or from its TPP (Model 2) and ensure it has not been
tampered with. The OpenID Connect request object can either be passed as a query string
parameter, a JWS or a JWE or can be referenced at a protected endpoint.

In addition to specifying a ticket, the TPP (SP) can optionally require a minimum strength of
authentication context or request to know how long ago the requesting SP was authenticated.
Multiple tickets could be passed, if necessary. Note, this feature is fully specified in the OpenlID
Connect standard, therefore, there is no need for any proprietary implementations.

Full accountability is available as required by all participants. Not only can the SP prove that they
received the original request from the TPP (Model 2) or the other SP (Model 1), but the TPP
(Model 2) or SP (Model 1) can prove that the access token that comes back was the token that was
intended to be affiliated to this specific request.

7.4 Hybrid Flow Request with Intent Id

Within the OpenlID Connect Framework there are three types of authentication flows:

1. Authentication Code Flow
2. Implicit Flow
3. Hybrid Flow

These flows will be combined with OpenID Connect claims to integrate authorization within
authentication flows.

The Hybrid Flow incorporating an Intent is the recommended approach because it not only
addresses the attacks outlined in IETF RFC 6819 [12] but also Identity Provider Mix Up attacks.
A so called ‘cut and pasted code attack’ where the attacker exchanges the ‘code’ in the
authorization response with the victim’s ‘code’ obtained by the attacker through another attack.
The attacker uses the ‘code’ in a session to feed to the client to obtain an access token with the
victim’s privileges. Furthermore, registering an intent simplifies audit reporting when the API

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 18
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

accesses sensitive data or triggers sensitive operations. This flow has also been adopted by the
Open Banking consortium. Since authorization claims will be included in the flow after
authentication, it is called Hybrid Grant Flow.

This section describes parameters that should be used with a hybrid grant flow request such that
an intent id can be passed from the TPP/SP to a SP.

Prior to this step:

The TPP/SP (Buyer) would have been granted a credential by another SP (Seller)

The Seller would have applied an authorization policy to the Buyer credential

The TPP/SP would have registered a client application (Step 1 from section 7.3)

The TPP/SP would have already registered an intent with a SP (Step 2 from section 7.3)
The SP would have responded with an intent id (Step 2 from section 7.3).

7.5 Hybrid Grant Flow Parameters
7.5.1 Minimum Conformance Requirements

7.5.1.1 Overview

This section describes the minimal set of authorization request parameters that an SP must
support. The technical definitive reference is specified in OpenID Connect Core Errata 1
Section 6.1 (Request Object) [28].

[R11] All standards and guidance MUST be followed as per the OpenlD Connect
(OIDC) specification.

[R12] A SP MUST support the issuance of OIDC ID Tokens as defined in the OIDC
specification.

[O1] A TPP/SP MAY request that an ID token is issued.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 19
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Parameter

MEF LSO

Notes

response_type

Required

OAuth2 specification requires that this parameter is provided in an
OAuth2 authentication workflow. The value is set to ‘code id_token’,
‘code id_token token’ or ‘code’.

[R13] TPPs/SPs MUST provide this parameter and set its value to one
of the three above depending on what the SP supports as
described in its well-known configuration endpoint.

See definition of the well-known configuration endpoint in the OpeniD

Connect Discovery 1.0 specification [30].

[R14] The values for these configuration parameters MUST match
those in the OIDC Request Object, if present.

Note: Risks have been identified with the “code” flow that can be

mitigated with the hybrid flow. The MEF LSO API Profile allows SPs

to indicate what grant types are supported using the standard well-

known configuration endpoint.

[R15] (OIDC) Relying Parties (RPs) MUST take care in validating
that code swap attacks have not been attempted.

An (OIDC) Relying Party is an OAuth 2.0 Client application that

requires user authentication and claims from an OpenID Connect

Provider.

client_id

Required

[R16] TPPs/SPs MUST provide this value and set it to the client id
issued to them by the SP to which the authorization code grant
request is being made.

[D4] The client_id SHOULD be self-issued by the TPP
as per the W3C DID standard, if it has been linked
to either directly or indirectly through a verifiable
credential as per the W3C Verifiable Credential
standard

redirect_uri

Required

[R17] TPPs/SPs MUST provide the URI to which they want the
resource owner's user agent to be redirected to after
authorization.

[R18] This URI MUST be a valid, absolute URL or resolvable URI
that was registered during Client Registration with the SP

[R19] In case the client_id is a DID, the URI MUST be a Service
Endpoint in the DID document of the registering client_id.

scope

Required

[R20] TPPs/SPs MUST specify the scope that is being requested.
[R21] Ata minimum, the scope parameter MUST contain openid

[R22] The scopes MUST be a sub-set of the scopes that were
registered during client registration with the SP.

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 20
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

state Recommended | [O2] TPPs/SPs MAY provide a state parameter.

The state parameter may be of any format, and is opaque to the SP.

[CR1]<[O1] If the state parameter is provided, the SP MUST play-

back the value in the redirect to the TPP/SP.
[D5] SPs SHOULD include the s_hash — the hash of
the state as the state parameter.
request Required [R23] The TPP MUST provide a value for this parameter.

[R24] The parameter MUST contain a JWS or JWE that is signed by
the TPP.

[R25] The JWS/JWE payload MUST consist of a JSON object
containing an OIDC request object as per OIDC Core
specification 6.1.

[R26] The OIDC request object MUST contain a claims section that
includes an ID Token having as a minimum the following
element:

o meflso_intent_id: that identifies the intent id for which
this authorization is requested

[R27] The intent id MUST be the identifier for an intent returned by
the SP to TPP that is initiating the authorization request.

[O3] acr_values: TPPs MAY provide a space-separated string that
specifies the acr values that the Authorization Server is being
requested to use for processing this Authentication Request,
with the values appearing in order of preference.

[R28] The acr_values MUST be one of:

e urn:meflso:sca: To indicate that secure customer
authentication must be carried out

e urn:meflso:ca: To request that the customer is
authenticated without using a SCA, if permitted

[O4] The OIDC request object MAY contain claims to be retrieved
via the UserInfo endpoint only if the endpoint is made
available and listed on the well-known configuration endpoint
on the authorization server.

[O5] The OIDC request object MAY contain additional claims to be
requested should the SPs authorization server support them;
these claims will be listed on the OID well-known
configuration endpoint.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 21
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
Table 2 — Minimum Conformance

7.5.1.2 Example for minimum conformance hybrid grant flow profiles

The examples below are non-normative.

7.5.1.2.1 HTTP Request Example

GET /authorize?

response type=code%20id token

&client id=s6BhdRkgt3

&state=af0ifjsldkjé&

&scope=openid

&nonce=n-056 WzA2Mj

&redirect uri=https://api.mytpp.com/cb

&request=CJleHAiOjEOOTUxOTk1lODd. JjVgsDuushgpwpOE.51eGFtcGxlIiwianRpIjoiM. ... J
1eHAiOjEO.o0lnx YKAmM2J1rbpOP8wGhi1lBDNHJjVgsDuushgpwpOE

Figure 4 — HTTP Request — Hybrid Grant Flow

7.5.1.2.2 Request JWS/JWE

Note that the Example below is without Base64 encoding. Also note that "essential™ is an optional
property. It indicates whether the Claim being requested is an Essential Claim. If the value is true,
this indicates that the Claim is an Essential Claim. For instance, the Claim request:

"auth time": {"essential": true}

can be used to specify that it is Essential to return an auth_time Claim Value. If the value is false,
it indicates that it is a Voluntary Claim. The default is false.

By requesting Claims as Essential Claims, the RP indicates to the SP that releasing these Claims
will ensure a smooth authorization for the specific task requested by a SP.

Note that even if the Claims are not available because the SP did not authorize their release or they
are not present, the authorization server must not generate an error when Claims are not returned,
whether they are Essential or Voluntary, unless otherwise specified in the description of the
specific claim, see the OIDC Core Specification.

"alg": "RS256",

"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"
}
{
"aud": "https://api.acme.com",
"iss": "s6BhdRkgt3",
"response_ type": "code id token",
"client id": "s6BhdRkgt3",
"redirect uri": "https://api.mytpp.com/cb",
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 22
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

http://openid.net/specs/openid-connect-core-1_0.html#Claims

MEF W128 Draft (R1)

"state": "afOifjsldkj",
"nonce": "n-0S6_WzA2Mj",
"max age": 86400,
"claims":
{
"userinfo":
{
"meflso intent id": {"value": "urn:acme-intent-58923", "essential": true}
} 4
"id token":
{
"meflso intent id": {"value": "urn-acme-intent-58923", "essential": true},
"acr": {"essential": true,
"values": ["urn:meflso:sca",
"urn:meflso:ca"]}}
}
}
}
<<signature>>
Figure 5 — Request JWS/JWE
7.5.1.2.3 id_token returned
Note that Sub is being populated with an Ephemeralld of the Intentld.
{
"alg": "RS256",
"kid": "12345",
"typ": "JWT"
}
{
"iss": "https://api.acme.com",
"iat": 1234569795,
"sub": "urn-acme-quote-58923",
"acr": "urn:meflso:ca",
"meflso intent id": "urn-acme-quote-58923",
"aud": "s6BhdRkgt3",
"nonce": "n-0S6 WzA2Mj",
"exp": 1311281970,
"s _hash": "76sa5dd",
"c_hash": "asd097d"
}
{
<<Signature>>
}
Figure 6 — id_token Return
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 23
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

7.5.1.2.4

id_token returned

MEF W128 Draft (R1)

Identity Claims and Intentld with sub being populated with an Userldentifier

{

"https://api.acme.com",
"ralph.bragg@raidiam.com",

"2 Thomas More Square",

"alg": "RS256",
"kid": "12345",
"typ": "JWT"

}

{
"iss":
"iat": 1234569795,
"sub":
"acr": "urn:meflso:sca",
"address":
"phone":

"aud":
"nonce":
"exp":
"s hash":
"c _hash":

{
<<Signature>>

}

"+447890130559",
"meflso intent id":
"s6BhdRkqgt3",
"n-0S6_WzA2Mj",
1311281970,
"76sa5dd",
"asd097d"

"urn-acme-quote-58923",

Figure 7 — Another Response

Implementers should note that ID Token Claims details should follow the JWT Best Current

Practices [6] section 3.1.

The different token data properties are listed in the table below. The last column describes what

the value of the field means.

Field Definition Notes Value(s)
iSs Issuer of the Token issuer will be specific to the business. A resolvable URI
token suchasaURL ora

[R29] The iss MUST be JSON string that

represents the issuer identifier of the

authorization server as defined
7519 [16].
When OAuth 2.0 is used, the value is the

in RFC

redirection URI. When OpenlID Connect is used,
the value is the issuer value of the authorization

SEerver.

DID

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

Page 24

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

MEF W128 Draft (R1)

sub

Token subject
identifier

[R30] Sub MUST be a unique and non-repeating
identifier for the subject, i.e. the Buyer.

The sub identifier MUST be the same when
created by the Authorization and Token
endpoints during the Hybrid flow.

[R31]

Non-ldentity
Services Providers
will use the
Intent/Consent ID
for this field.

Identity Services
Providers will
choose a value at the
discretion of the
SP's.

meflso_intent_id

Intent ID of the
originating
request

[R32] meflso_intent_id MUST be a unique and
non-repeating identifier containing the
intent_id.

[O6] This field MAY duplicate the value in
“sub” for many providers.

Use the
Intent/Consent ID
for this field.

aud Audience that [R33] OpenID Connect protocol mandates aud See requirement
the ID token is MUST include the client ID of the
intended for TPP/SP.
See also the FAPI Read Write / OpenID Standard
[31].
exp Token [R34] Exp MUST be included in the Claim ID | Expressed as an
expiration token epoch, i.e., number
date/time The validity length will be at the discretion of the | of seconds from
SPs such that it does not impact the functionality | 1970-01-01T0:0:0Z
of the APIs. For example, an expiry time of 1 as measured in
second is insufficient for all Resource Requests. UTC. RFC 7519
[16]
iat Token issuance | [R35] The iat property MUST be included in the | Expressed as an
date/time Claim ID token epoch, i.e., number
of seconds from
1970-01-01T0:0:0Z
as measured in
UTC.
auth_time Date/time when | [O7] The max_age property MAY be requested | Expressed as an

End User was

in the Claim ID Token.

epoch, i.e., number

authorised of seconds from
[CR2]< [02] If the max_age request is made or 1970-01-01T0:0:0Z
max_age is included as an as measured in
essential claim, auth_time MUST | UTC.
be supported by the SP.
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 25

Draft (R1)

following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Nonce

Used to help
mitigate against
replay attacks

[R36] The nonce property MUST be in the Claim
ID Token

The nonce value is passed in as a Request

parameter.

[R37] The nonce MUST be replayed in the ID
token when the token is utilized in a
subsequent access request.

acr

Authentication
Context Class
Reference

[R38] The acr property MUST be included in the
Claim ID Token
The acr is an identifier that qualifies what
conditions were satisfied when the authentication
was performed.
[D6] The acr SHOULD correspond
to one of the values requested
by the acr_values field on the
request. However, even if not
present on the request, the SP
should populate the acr with a
value that attests that the SP
performed or NOT performed
an appropriate level of
authentication such that the SP
believes it has met the
requirement for “Strong
Customer Authentication”
(SCA).

SPs that do not wish to provide this as a claim
should remove it from the well-known
configuration endpoint.

As per OIDC Core, marking a claim as “essential”
and a SP cannot fulfil it, then an error should not
be generated.

The values to be
provided will be
urn:meflso:ca or
urn:meflso:sca.

amr

Authentication
Methods
References

The amr property specifies the methods that are
used in the authentication. For example, this field
might contain indicators that a password was
supplied.

Note that the industry direction is to consolidate
on Vectors of Trust: RFC 8485 [18]. Hence, this
field may be replaced shortly. Also note that amr
does not give the flexibility to address all the
actual particulars of both the authentication and
the identity that is utilized.

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the

Page 26

following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

azp Authorized The azp property is the authorized party to which | A resolvable URI
party the ID Token was issued. such as a URL or a
DID
[O8] The azp property MAY be present in the
Claim ID Token.
[CR3]<[O3] If the azp property is present, it
MUST contain the OAuth 2.0 Client
ID of this party.
This Claim is only needed when the ID Token has
a single audience value, and that audience is
different than the authorized party. It may be
included even when the authorized party is the
same as the sole audience.
s_hash State Hash Its value is the
Value [D7] The s_hash property base64url encoding
SHOULD be present in the of the left-most half
Claim 1D Token of the hash of the
)] octets of the ASCII
The state hash, s_hash, inthe ID Token is to protect representation of the
the state value. state value, where
the hash algorithm
used is the hash
algorithm used in
the algHeader
Parameter of the ID
Token's JOSE
Header. For
instance, if the alg is
HS512, hash the
code value with
SHA-512, then take
the left-most 256
bits and base64url
encode them. The
s_hashvalue is a
case sensitive string.
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 27

Draft (R1)

following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

at_hash

Access Token
Hash Value

[O9] The Claim ID Token MAY be issued from
the Authorization Endpoint with an
access_token value.

[CR4]<[O4] The at_hash property MUST be
included in the Claim ID Token

Its value is the
base64url encoding
of the left-most half
of the hash of the
octets of the ASCI|I
representation of the
access_token value,
where the hash
algorithm used is the
hash algorithm used
in the alg Header
Parameter of the ID
Token's JOSE
Header. For
instance, if the alg is
RS256, hash the
access_token value
with SHA-256, then
take the left-most
128 bits and
base64url encode
them. The at_hash
value is a case
sensitive string.

¢_hash

Code hash
value.

[O10] The Claim ID Token MAY be issued from
the Authorization Endpoint with a code.

[CR5]<[O5] The c_hash property MUST be
included in the Claim ID Token

Its value is the
base64url encoding
of the left-most half
of the hash of the
octets of the ASCII
representation of the
code value, where
the hash algorithm
used is the hash
algorithm used in
the alg Header
Parameter of the ID
Token's JOSE
Header.

Table 3 — ID Token Claims Details

8 JWT Security Suite Information v1.0

This document utilizes, and where required concretizes for the usage with this standard, the JOSE
standard v1.0 [5]. Note that all JOSE standard V1.0 requirements are carried over as a minimal
requirement set in this document unless otherwise explicitly indicated in this document.

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 28
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
8.1 General Guidance for JWT Best Practice
See RFC 8725 [19] for the recommended JWT approach.

8.2 JWKS Endpoints

Upon issuance of a certificate from a JWKS [1] hosting service, a JWK Set will be created or
updated for a given TPP/SP.

[D8] All participants SHOULD include the "kid" and "jku" properties of the key
that was used to sign the payloads in the JWKS issuance request.

[D9] The JKU property SHOULD be considered a hint only and relying parties
should derive and then validate wherever possible the appropriate JWKS
endpoint for the message signer.

See AuthO JWKS [1], section 4.1
Note that as certificates are added and removed the JWKS endpoint will be updated automatically.

8.3 General outline for creating a JWS

8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS

[R39] Asthe JWS is used for non-repudiation, it MUST be signed using one of JWS
issuer's private keys.

[R40] The private key MUST have been used by the issuer to get a signing certificate
issued from an identity provider.

[R41] The signing certificate MUST be verifiably valid at the time of creating the
JWS.

8.3.2 Step 2: Form the JOSE Header

[R42] The JWS JOSE header is a JSON object which MUST consist of minimally
two fields, also called the claims, as specified below:

Claim | Description

alg The algorithm that will be used for signing the JWS.

[R43] The alg property MUST be taken from the list of valid JOSE algorithms can be found in
IANA JOSE [5], section 3.1.

In addition, this document recommends the following algorithms:

[D10] ED25519, also as a JWK, with sha3-256 as the hashing algorithm
SHOULD also be used as an algorithm for JWS signing

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 29
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Claim | Description

kid The “kid” (key ID) Header Parameter is a hint indicating which key was used to secure the
JWS.

[R44] The kid property MUST match the certificate id of the certificate selected in step 1.

[D11] The receiver SHOULD use this value to identify the certificate to be used
for verifying the JWS.

Table 4 — Forming the JOSE Header

8.3.3 Step 3: Form the payload to be signed

The JSON payload to be signed must have the following claims:

Claim | Description
iSS The issuer of the JWS.

[R45] The iss property MUST match the dn of the certificate selected in step 1.

Table 5 — Signing the JSON Payload

The payload to be signed is computed as:

payload = base64Encode (JOSEHeader) + “.” + base64Encode (json)

Where:

e JOSEHeader: is the header created in Step 2 and
e json: is the message for the original data to be sent

8.3.4 Step 4: Sign and encode the payload

The signed payload is computed as follows:

signedAndEncodedPayload = base64Encode (encrypt (privateKey, payload))

Where:

e privateKey: is the private key selected in step 1
e payload: is the payload computed in Step 3
e encrypt: Is an encryption function that implements the “alg” identified in Step 2.

8.3.5 Step 5: Assemble the JWS

The JWS is computed as follows:

JWS = payload + “.” + signedAndEncodedPayload
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 30
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Where:

e payload: is the payload computed in Step 3
¢ signedAndEncodedPayload: is the signed element computed in Step 5.

8.4 General Outline for creating a JWE

The implementation guide is based on RFC 7516 [14].

JSON Web Encryption (JWE) represents encrypted content using JSON data structures and
base64url encoding. These JSON data structures may contain whitespace and/or line breaks before
or after any JSON values or structural characters, in accordance with Section 2 of RFC 7516 [14].
A JWE represents these logical values:

e JOSE Header

e JWE Encrypted Key

JWE Initialization Vector

JWE AAD (Additional Authenticated Data)
JWE Ciphertext

JWE Authentication Tag

For a JWE, the JOSE Header members are the union of the members of these values:

e JWE Protected Header
e JWE Shared Unprotected Header
e JWE Per-Recipient Unprotected Header

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the plaintext
and the integrity of the JWE Protected Header and the JWE AAD.

This document recommends the following for the JWE Compact Serialization as a representation:

[D12] JWE Shared Unprotected Header or JWE Per-Recipient Unprotected Header
SHOULD not be used.

In this case, the JOSE Header and the JWE Protected Header are the same.

In this serialization, the JWE is represented as the following concatenation:

BASE64URL (UTF8 (JWE Protected Header)) || '.' ||
BASE64URL (JWE Encrypted Key) || '." ||
BASE64URL (JWE Initialization Vector) || '.' [|]
BASE64URL (JWE Ciphertext) || '.' ||

BASE64URL (JWE Authentication Tag)

8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE

[R46] As the JWS is used for non-repudiation, it MUST be signed using one of JWS
issuer’s private keys.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 31
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

[R47] The private key MUST have been used by the issuer to get a signing certificate
issued from an identity provider.

[R48] The signing certificate MUST be verifiably valid at the time of creating the
JWE.

8.4.2 Step 2: Form the JOSE Header of the JWE

[R49] The JWE JOSE header is a JSON object which MUST consist of minimally
four fields, also called the claims, as specified below:

Claim Description
alg The algorithm that will be used for signing the JWS.

[R50] The alg property MUST be taken from the list of valid JOSE algorithms in
RFC 7518 [15], section 3.1

[R51] The NULL cipher MUST NOT be used as an alg value in JWTs.
In addition, this document recommends the following algorithms:

[D13] ED25519, also as a JWK, with sha3-256 as the hashing
algorithm SHOULD be used.

kid The "kid" (key ID) Header Parameter is a hint indicating which key was used to
secure the JWS.

[R52] The kid property MUST match the certificate id of the certificate selected
in step 1.

[D14] The receiver SHOULD use this value to identify the
certificate to be used for verifying the JWS.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 32
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

enc

The “enc” (encryption algorithm) Header Parameter identifies the content
encryption algorithm used to perform authenticated encryption on the plaintext to
produce the ciphertext and the Authentication Tag.

[R53] The selected encryption algorithm MUST be an AEAD algorithm with a
specified key length.

The encrypted content is not usable if the “enc” value does not represent a

supported algorithm.

[D15] “enc” values SHOULD either be registered in the IANA
“JSON Web Signature and Encryption Algorithms” registry
established by [(IANA - JOSE, 2020)] or be a value that
contains a Collision-Resistant Name.

The “enc” value is a case-sensitive ASCII string containing a String Or URI
value.

[R54] The “enc” property MUST be present

[R55] The “enc” property MUST be understood and processed by
implementations.

A list of defined "enc" values for this use can be found in the IANA registry
established in IANA JOSE [5], with the initial contents of this registry are the
values defined in Section 5.1.

accessjwk | This parameter has the same meaning, syntax, and processing rules as the “jwk”

Header Parameter defined in Section 7.1.3 of RFC 7516 [14], except that the key
is the public key to which the JWE was encrypted with; this can be used to
determine the private key needed to decrypt the JWE.

8.4.3

Table 6 — Forming the JOSE Header of the JWE

Step 3: Form the encryption key, initialization vector and AAD

Determine the Key Management Mode employed by the algorithm used to determine the
Content Encryption Key value (set in “alg”).

When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, generate a random CEK value. See RFC 4086 [10] for considerations on
generating random values.

[R56] The CEK MUST have a length equal to that required for the content encryption
algorithm.

When Direct Key Agreement or Key Agreement with Key Wrapping are employed, use
the key agreement algorithm to compute the value of the agreed upon key. When Direct
Key Agreement is employed, let the CEK be the agreed upon key. When Key Agreement
with Key Wrapping is employed, the agreed upon key will be used to wrap the CEK.
When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are
employed, encrypt the CEK to the recipient and let the result be the JWE Encrypted Key.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 33
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

5. When Direct Key Agreement or Direct Encryption are employed, let the JWE Encrypted

Key be the empty octet sequence.

When Direct Encryption is employed, let the CEK be the shared symmetric key.
Compute the encoded key value BASE64URL(JWE Encrypted Key).

8. Generate a random JWE Initialization Vector of the correct size for the content

~No

encryption algorithm (if required for the algorithm); otherwise, let the JWE Initialization

Vector be the empty octet sequence.

9. Compute the encoded Initialization Vector value BASE64URL (JWE Initialization
Vector).

10. Create the JSON object(s) containing the desired set of Header Parameters, which

together comprise the JOSE Header: one or more of the JWE Protected Header. There are

no unprotected headers in the JWE compact serialization representation.

11. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE Protected
Header)).

12. Let the Additional Authenticated Data encryption parameter be ASCII(Encoded
Protected Header).

8.4.4 Step 4: Form the JWE Ciphertext and final JWE

The JSON payload to be encrypted must have the following claims:

Claim | Description

iss The issuer of the JWS.

[R57] The iss property MUST match the dn of the certificate selected in step 1.

Table 7 — The Issuer

1. Encrypt the BASE64URL (JSON message) using the CEK, the JWE Initialization
Vector, and the Additional Authenticated Data value using the specified content

encryption algorithm to create the JWE Ciphertext value and the JWE Authentication Tag

(which is the Authentication Tag output from the encryption operation).
Compute the encoded ciphertext value BASE64URL(JWE Ciphertext).

wmn

4. 1f aJWE AAD value is present, compute the encoded AAD value BASE64URL(JWE
AAD).

Compute the encoded Authentication Tag value BASE64URL(JWE Authentication Tag).

5. Create the desired serialized output. The Compact Serialization of this result is the string
BASE64URL(UTF8(JWE Protected Header)) || "." || BASE64URL(JWE Encrypted Key) ||
"' ||IBASE64URL(JWE Initialization Vector) || "." || BASE64URL(JWE Ciphertext) || "." ||

BASE64URL(JWE Authentication Tag).

9 LSO API Payload Authenticity

Up to this point we have only discussed security of the LSO API payload and LSO API response
as described in the previous section. However, of equal importance is LSO API payload and LSO
API response authenticity since the LSO API payload and LSO API response may be constructed
by an entity other than Buyer or Seller. Therefore, this document only focuses on the authenticity

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 34

Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

of the LSO API payload and LSO API response since the authenticity of the Subject and Seller
have already been established before an LSO API payload and LSO API response is authenticated.

LSO API payload / response authenticity is a special case of Message Authenticity which is
defined as the outcome of message authentication, which is defined in NIST SP 800-152 [24] as a
process that provides assurance of the integrity of messages, documents, or stored data. The
following requirements are focused on authenticity and privacy.

[R58] Delegation of Trust MUST NOT be permitted if Buyer / Seller and their
intended delegates are not in the same Trust Domain

Delegation of Trust refers to the process whereby a Buyer / Seller imparts their inherent level of
trust within their Trust Domain to another Buyer / Seller.

Message Authenticity, and therefore, LSO API payload / response authenticity, in the context of
this document specifies how a Message Payload needs to be structured such that it can be
authenticated independent of the authentication of a Buyer or Seller.

[D16] To ensure Message Authenticity for a request from the Buyer to the Seller,
the semantics of a Message Payload SHOULD contain the elements of Table

8 below.
Element Example
A previously established shared secret between An alphanumeric string such as
Subject and Seller “ABC1234X7CV5”
A new shared secret between Buyer and Seller An alphanumeric string such as
“CBA1234X7CV5”
A domain identifier for the next response from google.com

Seller to Buyer, if the Buyer’s domain identifier
changes compared to the domain identifier of the
Buyer’s request

An endpoint identifier for the next response from /quotemanagement/notification
Seller to Buyer, if the Buyer’s domain identifier
changes compared to the domain identifier of the
Buyer’s request

Table 8 — Message Payload Request Required Elements

[D17] To ensure Message Authenticity for a response from the Seller to the Buyer,
the semantics of a Message Payload SHOULD contain the elements of Table
8 where the roles of Buyer and Seller are reversed.

[D18] All Policies in a Buyer’s or Seller’s Trust Domain SHOULD enforce [D16]

and [D17]
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 35
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

10 Implementation Guide (Non-Normative)

10.1 Overview

This section provides an implementation perspective of the MEF LSO API Security Profile. For
generality, this document will use an abstracted APl model. Any application to a specific APl is
simply a swapping out of the relevant API data model.

10.2 Specified Behavior

The implementation of the abstracted API is based on the known configurations listed in the
subsections below.

10.2.1 Client Types

As per the OAuth 2.0 specification [11], section 2.1, the Confidential Client Type is illustrated in
the sample API as it can maintain its own credentials.

10.2.2 Grant Types

10.2.2.1 OIDC Hybrid Flow (response_type = code id_token)

The sample API illustrates the use of the request_type = code id_token for the OIDC
Hybrid Flow implementation.

The SP may optionally choose to return Refresh Tokens for the Hybrid Grant Flow when issuing
an access token.

10.2.2.2 Client Credentials Grant Type using multiple scopes (scope = specific functions)

The Client Credentials Grant Type (RFC 6749 [11], section 4.4) is only used when the
TPP/SP requires an access token (on behalf of itself) to access an API resource e.g.
o Quotes:

POST /quote
GET /quote-submissions/{QuoteSubmissionId}

Figure 8 — Client Credential Type Using Multiple Scopes

In this example, an SP enables the same Confidential Client (Clientld) access to an API
called Quote. A TPP/SP may, therefore, choose to request either a single scope or
multiple scope(s) as the TPP/SP may want to use the same access token across multiple
API e.g., Quote and Order.

Only valid API scopes will be accepted when generating an access token, for example
POST /quote or GET/quote-submissions.

Access tokens generated by a Client Credentials grant may not return any refresh tokens
(as per the OAuth 2.0 specification [11]).

Scopes are delimited by using a comma, for example POST /quote, GET /hub.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 36
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-4.4

10.2.3

10.2.4

10.2.6

MEF W128 Draft (R1)

Access Tokens

For one or more APIls, the access token must be obtained within a secure, server-side
context between the TPP/SP and the SP.
Access Tokens must be validated by the TPP/SP as outlined within RFC 6749 [11].

Refresh Tokens

SPs may optionally return a refresh token [29] when an authorization request is
successfully processed at the token endpoint. The Hybrid Grant Flow supports the
provisioning of refresh tokens.

The sample API implementation below cites an example for SPs requesting a Refresh
Token to refresh an expired access token prior to invoking the /quote resource.
Refresh Tokens must be validated as outlined in OpenlD Registration [29].

ID Tokens

ID Tokens must be validated by the TPP/SP as outlined in OpenID Registration [29].
TPPs/SPs must use the meflso_intent_id claim to populate and retrieve the IntentlD, e.g.,
QuotelD in our example, for any required validation.

The full set of claims that can be represented within an ID Token are documented in the
Request Object and ID Token Section of the above MEF LSO API Security Profile.

Authorization Codes

Authorization codes must be validated by the TPP/SP as outlined in RFC 6749 [11].

10.3 Non-Specified Behavior

The current MEF LSO APIs are not specified for the following configurations:

10.3.1

10.3.2

Client Types

As per the OAuth 2.0 specification [11], section 2.1, the Public Client Type has not been
defined for MEF LSO APIs.

Grant Types

10.3.2.1 OIDC Hybrid Flow (response_type = code id_token token or response_type = code token)

Forces an access token to be returned from the SP authorization endpoint (instead of a
token endpoint).

10.3.2.2 OIDC Implicit Flow (response_type=id_token token or response_type=id_token)

The Implicit Flow does not authenticate the Client that is invoking the request.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 37
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

http://openid.net/specs/openid-connect-core-1_0.html#RefreshTokens
https://tools.ietf.org/html/rfc6749#section-2.1

MEF W128 Draft (R1)

10.3.2.3 Client Credentials Grant Type (scope=openid email profile address phone)

e Requesting OIDC specific scopes or any non-specified scopes when using the Client
Credentials grant.

10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token)

Each SP’s authorization / resource server will be configured independently to comply with internal
SP security policies and guidelines. The LSO API specifications do not mandate validity lengths.

10.3.3.1 Authorization Code

e The OAuth 2.0 Specification [11] suggests an authorization code should be short lived to
a maximum of 10 minutes. Any codes exceeding this limit are to be rejected.

10.3.3.2 ID Token

e ID Token claims (exp and iat) determine its validity.

e Returned with the authorization code when the Hybrid Grant Flow (code id_token) is
initiated.

10.3.3.3 Access Token

e The expires_in attribute returned by the authorization server when an access token is
generated determines its validity.

e Access tokens are generally short lived, and when they expire, are then exchanged for
another using a longer-lived refresh token.

e Refer to Section 16.18 of OpenID Connect Core [28], Lifetimes of Access Tokens and
Refresh Tokens.

10.3.3.4 Refresh Token

e The expires_in attribute returned by the authorization server when a refresh token is
generated determines its validity.
e Refresh tokens are generally longer lived in comparison to access tokens.

e Refer to Section 16.18 of OpenID Connect Core [28], Lifetimes of Access Tokens and
Refresh Tokens.

10.4 Success Flows

In the sections below, the document outlines the success flow path of proper client application
authentication and authorization using the sample API.

10.4.1 Quote API Specification

The sequence diagram below highlights the standard OAuth 2.0 Client Credentials Grant and
OIDC Hybrid Grant flow with intent that are used by the sample API.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 38
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

— Seller
teblish T 1.3
Establis TS 1.2 M
05T / clies
Vali clie credentials, scap
Validate clientld matches client SSL ce
ish
Fis
Cre
Bi
HTTP 281 (Created), Quotel
The
:];uw
TER Seller

Figure 9 — Sample Quote APl OAuth2/OIDC Authentication/Authorization Flow

10.4.2 Client Credentials Grant Type (OAuth 2.0)

10.4.2.1 Summary

This grant type is used by the Buyer (through the TPP) in Step 2 to setup a single quote with the
Seller (SP).

1. The TPP initiates an authorization request using valid Client Credentials Grant (RFC
6749 [11], section 4.4) type and scope(s).

2. The SP authorization server validates the Client Authentication request from the TPP and
generates an access token response when the request is valid.

3. The TPP uses the access token to create a new Quote resource against the SP resource

server.

The SP resource server responds with the Quoteld for the resource it has created.

The Client Credentials Grant may optionally be used by the TPP in Step 5 to retrieve the

status of a Quote or Quote-Submission where no active access token is available.

ok~

10.4.3 OIDC Hybrid Flow

10.4.3.1 Summary

e The Hybrid Grant flow [26] is the recommendation from the MEF LSO Security Profile
and the FAPI Specification [31] for FAPI Read/Write. The Hybrid flow prevents IdP
mix-up-attacks as documented in Mix-up Mitigation [7].

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 39
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth

MEF W128 Draft (R1)

e This is initiated at the end of Step 2 by the TPP after the Quoteld is generated by the SP

and returned to the TPP.

e This is used in a redirect across the Buyer and Seller (SP) in Step 3 for the Buyer to

authorize consent with the SP — for the TPP to proceed with the Quote.

e This is used across the TPP and SP in Step 4 by exchanging the authorization code for an

access token to create the Quote-Submission resource.

10.4.4 HTTP Request and Response Examples

10.4.4.1 Step 1 - Request Quote Initiation

There are no requests and responses against the sample Quote API in this Step for the Buyer, TPP

and Seller/SP.

10.4.4.2 Step 2 - Setup Single Quote Initiation

TPP obtains an access token using a Client Credentials Grant Type. The scope quote must be
used. When an access token expires, the TPP will need to re-request for another access token

using the same request below.

Request: Client Credentials using private_key jwt

Response: Client
Credentials

POST /as/token.oauth2 HTTP/1.1

Host: https://authn.acme.com

Content-Type: application/x-www-form-urlencoded

Accept: application/json

grant type=client credentials

&scope=quote

&client assertion type=
urn%$3Aietf%3Aparams$3Acauth%3Aclient-assertion-type$3Ajwt-bearer

&client assertion=eyJhbGciOiJSUzIINiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRw

czovL2p3dClpZHAUuZXhhbXBsZS5jb20iLCJIzdWI1i01iJtYWlsdG86bWlrZUBleGFtcGx1LmN

vbSIsIm5iZiI6MTQ50TE4AMzYwWMSWwiZXhwIjoxNDkSMTg3MjAXLCIpYXQi0jJEOOTkxODM2MD

EsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiaHROCHM6LY91eGFtcGx1LmNvbS9yZiWdpc3R1lc

1J9.SAxPMaJK w¥Yl W2idTQASJiEZ4UoI7-P2SbmnHKroLvP8ZJZX6J1lnpK xClJIswAnilT

plUnHJIs1lc08JrexctaeETBrqwHG181BcWKIhHK2Tv5m4nbTsS11MFQOIMUTRFG3 LQ1iHGV?2

M8Hf1v9q9YaQqgxDadMKOasDUtE zYMHz8kKDb-jj-Vh4mVDeM4 FPiffd2C5ckjkrZBNOKO

01Xktm7xTqX6fk56KTrejeAdx6D 1ygJIcGfiZCv6Knki7J1-6MEfwUKbIZ0Z 9LiwHE51LXPuy

_QrOyMOpONWK] 9K4M7j7I4GPGvzyVapazUgjcOazZY rlu p9tnS1E781dDLuw

{

"alg": "RS256",
"kid": "12345",
"typ": "JWT"

}

{
"iss": "s6BhdRkgt3",
"sub": "s6BhdRkgt3",

"exp": 1499187201,
"iat": 1499183601,

HTTP/1.1 200 Success
Content-Length: 1103
Content-Type:
application/json
Date: Mon, 26 Jun 2022
15:18:28 GMT
{
"alg": "RS256",
"kid": "12347",
"typ": "JWT"
}
{
"access_ token":
"2YotnFZFEjrlzCsicMWpAA",
"expires in": 3600,
"token type":
"bearer",
"scope":"quote"
}

<<signature>>

"jti": "idl23456",
"aud": "https://authn.acme.com/as/token.oauth2"
}
<<signature>>
Table 9 — Non-Base64 JWT client_assertion
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 40
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Then the TPP uses the access token (with quote scope) from the SP to invoke the sample Quote

API.
Request:. Quote API Response: Quote API
POST /quote HTTP/1.1 HTTP/1.1 201 Created
Authorization: Bearer 2YotnFZFEjrlzCsicMWpAA Content-Type: application/json
x-idempotency-key: FRESC0.21302.GFX.20 x-fapi-interaction-id: 93bac548-d2de-
x-fapi-mef-id: mef/2021/011 4546-0106-880a5018460d
x-fapi-buyer-last-logged-time: 2021-06-13T11:36:09
x-fapi-buyer-ip-address: 104.25.212.99 {
x-fapi-interaction-id: 93bac548-d2de-4546-b106- "alg": "RS256",
880a5018460d "kid": "12347",
Content-Type: application/json "typ": "JWT"
Accept: application/json }

{

"alg": "RS256", {

"kid": "12345", "Data": {..}

"typ": "JWT" }
} .
. <<signature>>
{

"Data": {..}
}
<<signature>>

Table 10 — Single Quote Initiation

10.4.4.3 Step 3 - Authorize Consent

Then the TPP receives a Quoteld from the SP (Seller). The TPP then creates an authorization
request (using a signed, and possibly encrypted, JWT request containing the Quoteld as a claim)
for the Buyer/TPP to consent to the Quote directly with their Seller/SP. The request is an OIDC

Hybrid Grant flow (requesting for code and id_token)

Request: OIDC Hybrid Grant Flow

Response: OIDC Hybrid
Grant Flow

Sourced from the MEF LSO Security Profile Request Object section

GET /authorize?

response type=code id token

&client id=s6BhdRkqgt3

&state=af0ifjsldkj

&scope=openid quote

&nonce=n-0S6_WzA2M]

&redirect uri=https://api.mytpp.com/cb

&request=CJleHAiOjEOOTUxOTk10Dd. JjVgsDuushgpwpOE.51eGFtcGx1I
iwianRpIjoiM....JleHAiOjEO.olnx YKAm2J1rbpOP8wGhi1lBDNHJjVgsDuushgpwpOE

{
"alg": "",
"kid": "GxlIiwianVgsDuushgjEOOTUxOTk"

"iss": "https://api.acme.com",
"aud": "s6BhdRkgt3",
"response type": "code id token",

After the Buyer has consented
directly with the SP the SP
validates the authorization
request and generates an auth
code and ID token

HTTP/1.1 302 Found
Location:
https://api.mytpp.com/cb#

code=Splx10BeZQQYbYSOWxSHIA
&id token=eyJoO

NiJ9.eyJlc ...

I6IjIifX0.DeWtd4Qu ...
&state=af0ifjsldkj

Z2XS0o

MEF W128
Draft (R1)

authorized to modify any of the information contained herein.

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is

Page 41

MEF W128 Draft (R1)

"client id": "s6BhdRkgt3",
"redirect uri": "https://api.mytpp.com/cb",
"scope": "openid , POST /quote, GET /quote",
"state": "af0ifjsldkj",
"nonce": "n-0S6 WzA2Mj",
"max age": 86400,
"claims":
{
"userinfo":
{
"meflso intent id": {"value": "urn:acme:intent:58923",
"essential": true}
b
"id token":
{
"meflso intent id": {"value": "urn:acme:intent:58923",
"essential": true},
"acr": {"essential": true,
"values": ["urn:meflso:sca"

IS

}

<<signature>>

Table 11 — Non-Base64-encoded Example of the Request Parameter Object

Then, the Buyer is redirected to the TPP. The TPP will now possess the Authorization Code and
ID Token from the SP (Seller). Note at this point, there is no access token. The TPP will now

introspect the ID Token and use it as a detached signature to check:

e The hash of the authorization code to prove it has not been tampered with during redirect
(comparing the hash value against the ¢_hash attribute in ID Token)
e The hash of the state to prove it has not been tampered with during redirect (comparing

the state hash value against the s_hash attribute in the ID Token)

Example: ID Token

{
"alg": "R5256",
"kid": "12345",

"typ": "JWT"

}

{
"iss": "https://api.acme.com",
"iat": 1234569795,
"sub": "urn:acme:quote:58923",
"acr": "urn:meflso:ca",
"meflso intent id": "urn:acme:quote:58923",
"aud": "s6BhdRkgt3",
"nonce": "n-0S6 WzA2Mj",
"exp": 1311281970,
"s hash": "76sa5dd",

"c_hash": "asd0974d"
}

<<signature>>

Table 12 — ID Token Example
MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 42
Draft (Rl) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

Once the state and code validations have been confirmed as successful, the TPP will proceed to
obtain an access token from the SP/Seller using the authorization code it now possesses. The TPP
will present its authorization code together with the private_key jwt. The access token is required
by the TPP to submit the Quote on behalf of the Buyer. The quote scope should already be

associated with the authorization code generated in the previous step.

Request: Access Token Request using Authorization Code and private key jwt

Response: Access Token

POST /as/token.oauth2 HTTP/1.1

Host: https://authn.acme.com

Content-Type: application/x-www-form-urlencoded

Accept: application/json

grant type=authorization code

&code=Splx10BeZQQYbYSOWxSbIA

&redirect uri=https://api.mytpp.com/cb

&client assertion type=
urn%$3Aietf$3Aparams$3RAocauth%3Aclient-assertion-type$3Ajwt-bearer

&client assertion=eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRw

czovL2p3dClpZHAUZXhhbXBsZS5jb20iLCJIzdWIi0iJtYWlsdG86bWlrZUBleGFtcGx1LmN

vbSIsIm51ZiI6MTQ50TEAMzYwMSwiZXhwIjoxNDkSMTg3MIAXLCIpYXQ10jJEOOTkxODM2MD

EsImp0aSI6ImlkMTIzNDU2IiwidH1wIjoiaHROCHM6LYy91eGFtcGx1LmNvbS9yZWdpc3R1lc

1J9.SAxPMaJK wYl W2idTQAS]jiEZ4UoI7-P2SbmnHKr6LvP8ZJZX6J1lnpK xClJswAnilT

plUnHJslc08JrexctaeEIBrqwHG18iBcWKIhHK2Tv5m4nbTsSi1MFQOIMUTRFg3 LQiHQV2

M8Hf1v9g9YaQqxDad4MKO0asDUtE zYMHz8kKDb-jj-Vh4mVDeM4 FPiffd2C5ckjkrZBNOKO

01Xktm7xTgX6fk56KTrejeAdx6D 1ygdJcGfjZCv6Knki7J1-6MfwUKbOZoZOLiwHES1LXPuy

_ QrOyMOpONWK] 9K4Mj7I4GPGvzyVgpazUgjcOazY rlu p9tnS1E781dDLuw

{

"alg": "RS256",
"kid": "12345",
"typ": "JWT"
}
{
"iss": "s6BhdRkqgt3",
"sub": "s6BhdRkgt3",
"exp": 1499187201,
"iat": 1499183601,
"jti": "id1l23456",
"aud": "https://authn.acme.com/as/token.oauth2"
}
<<signature>>

HTTP/1.1 200 OK
Content-Type:
application/json

Cache-Control: no-store
Pragma: no-cache
{
"access token":
"S1AV32hkKG",
"token type": "Bearer",
"expires in": 3600

}

Table 13 — Non-Base64 JWT Client Assertion

10.4.4.4 Step 4 — Create Quote-Submission

The TPP has an access token which can be used to create a Quote-Submission (Step 4). The TPP
must obtain the Quoteld (Intent ID) so that the Quote request is associated with the correct
Quoteld. This is sourced from the Quoteld claim from the signed ID Token (default). The TPP
will need to decode the ID Token JWT and locate the claim attribute associated with the Quoteld.

Once the previous step is completed, the TPP can now invoke the /quote-submissions API endpoint
to commit the Quote using the access token and Quoteld in the payload of the request.

MEF W128
Draft (R1)

authorized to modify any of the information contained herein.

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is

Page 43

MEF W128 Draft (R1)

Request: quote-submissions

Response: quote-submissions

POST /quote-submissions HTTP/1.1

Authorization: Bearer S1AV32hkKG
x—idempotency-key: FRESNO.1317.GFX.22

x-fapi mef-id: mef/2021/011
x-fapi-buyer-last-logged-time: 2020-06-13T11:36:09
x-fapi-buyer-ip-address: 104.25.212.99
x-fapi-interaction-id:
Content-Type: application/json
Accept: application/json

{

"algll: "RSZ56",
"kid": "12345",
"typ " : " JWTH

}

{
"Data": {..}

}

<<signature>>

93bac548-d2de-4546-b106-880a5018460de9699

HTTP/1.1 201 Created
x-fapi-interaction-id: 93bac548-
d2de-4546-b106-880a5018460d
Content-Type: application/json

{

"alg": "RS256",
"kid": "12347",
lltypll: "JWT"

}

{
"Data": {..}

}

<<signature>>

Table 14 — Non-Base64 JWT Quote Submission

10.4.4.5 Step 5 — Get Quote-Submission Status

The TPP can query for the status of a Quote-Submission by invoking the /quote-submissions API
endpoint using the known QuoteSubmissionld. This can use an existing access token with quote
scope or the TPP/SP can obtain a fresh access token by replaying the client credentials grant

request as per Step 2 — Setup Single Quote Initiation.

Request: quote-submissions/{QuoteSubmissionld}

Response: quote-submissions

GET /quote-submissions/58923-001 HTTP/1.1
Authorization: Bearer S1AV32hkKG

x-fapi mef-id: mef/2021/011
x-fapi-buyer-last-logged-time: 2020-06-13T11:36:09
x-fapi-buyer-ip-address: 104.25.212.99
x-fapi-interaction-id: 93bac548-d2de-4546-b106-
880a5018460d

Accept: application/json

HTTP/1.1 200 OK
x-fapi-interaction-id:
p106-880a5018460d
Content-Type: application/json

93bacb548-d2de-4546-

{

"alg": "RS256",
"kid": "12347",
"typ" : n JWT"

}

{
"Data": {..}

}

<<signature>>

Table 15 — Non-Base64 JWT Quote Submission Status

Afterwards, a TPP can also optionally query for the status of a Quote resource by invoking
/quote/{Quoteld} API endpoint. This can use an existing access token with quote scope or the
TPP can obtain a fresh access token by replaying the client credentials grant request as per Step 2

— Setup Single Quote Initiation.

MEF W128
Draft (R1)

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the
following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

Page 44

MEF W128 Draft (R1)

10.5 Edge Cases (Non-Normative)

This section provides further information on potential, common edge cases that may arise during
the implementation of this standard. The document continues to use the Quote API example for
specificity. However, the edge cases are general in nature, and not constrained to said API.

10.5.1 Buyer Consent Authorization Interrupt with Seller

APl | Scenario Workflow Step | Impact Solution Options

Any | Due to an interruption, Step 3: Resource | The TPP may choose to implement a separate
the Buyer does not Authorize Status, in | follow up process which reminds the Buyer to
complete the Consent the complete their authorization consent steps
Authorization of the API example with the SP. This would imply re-using the
request with the SP Quote, assigned unique resource ID, e.g., the
when redirected by the remains as | Quoteld, that has a status and re-issuing
TPP (for Quote API Pending another Hybrid Grant Flow request to the SP.

after creating a Quoteld)

The implementation of how the follow up
process is initiated is in the competitive space
for the TPPs/SPs to decide.

Table 16 — Buyer Consent Authorization Interruption

11 References

[1] Auth0 JWKS, JSON Web Key Set (JWKS), June 2021

[2] ECMA JSON, The JSON Data Interchange Syntax, 2" Edition, December 2017

[3] CNSSI 4009, Committee on National Security Systems Glossary, April 2015

[4] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software
Architectures, 2000

[5] [TANA JOSE, JSON Obiject Signing and Encryption (JOSE), November 2020

[6] IETF, JSON Web Token Best Current Practices, June 2017

[71 [1ETF, OAuth 2.0 Mix-up Mitigation, July 2016

[8] IETF, OAuth 2.0 Software Statement, September 2013

[9] IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March

1997

[10] IETF RFC 4086, Randomness Requirements for Security, June 2005

[11] IETF RFC 6749, The OAuth 2.0 Authorization Framework, October 2012

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 45
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

[12]
[13]
[14]
[15]
[16]
[17]

[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]

MEF W128 Draft (R1)

IETF RFC 6819, OAuth 2.0 Threat Model and Security Considerations, January 2013
IETF RFC 7515, JSON Web Signature (JWS), May 2015

IETF RFC 7516, JSON Web Encryption (JWE), May 2015

IETF RFC 7518, JSON Web Algorithms (JWA), March 2015

IETF RFC 7519, JSON Web Token (JWT), May 2015

IETF RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, May
2017

IETF RFC 8485, Vectors of Trust, October 2018
IETF RFC 8725, JSON Web Token Best Current Practices, February 2020
MEF 10.4, Ethernet Service Attributes, Phase 4, December 2018

MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework, January 2021

MEF W116, LSO Cantata and LSO Sonata Product Inventory API — Developer Guide,
In Development

MEF W118, Zero Trust Framework and Service Attributes, In Development

NIST SP 800-152, A Profile for U.S. Federal Cryptographic Key Management Systems,
October 2015

Open Banking, Read/Write Data API Specification v3.1.2, May 2019

Open Banking, Security Profile Draft v1.1.2, February 2018

Open Banking, Read/Write API Profile v3.1.8, Undated

OpenlD, OpenID Connect Core 1.0, November 2014

OpenlID, OpenID Connect Registration 1.0, November 2014

OpenlID, OpenID Connect Discovery 1.0, November 2014

OpenlD, Financial-grade API Security Profile 1.0 — Part 1: Baseline, March 2021
W3C DIDs, Decentralized Identifiers (DIDs) v1.0, June 2021

W3C VCDM, Verifiable Credentials Data Model 1.0, November 2019

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 46
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is

authorized to modify any of the information contained herein.

MEF W128 Draft (R1)
Appendix A Why Decentralized Public Key Infrastructure? (Informative)

Currently 3rd parties such as Domain Name Services (DNS) registrars, the Internet Corporation
for Assigned Names and Numbers (ICANN), X.509 Certificate Authorities (CAs), or social media
companies are responsible for the creation and management of online identifiers and the secure
communication between them.

As evidenced over the last 20+ years, this design has demonstrated serious usability and security
shortcomings.

When DNS and X.509 Public Key Infrastructure (PK1X) as described in NIST publication SP 800-
32 was designed, the internet did not have a way to agree upon the state of a registry (or database)
in a reliable manner with no trust assumptions. Consequently, standard bodies designated trusted
3rd parties (TTPs) to manage identifiers and public keys. Today, virtually all Internet software
relies on these authorities. These trusted 3rd parties, however, are central points of failure, where
each could compromise the integrity and security of large portions of the Internet. Therefore, once
a TTP has been compromised, the usability of the identifiers it manages is also compromised.

As a result, companies spend significant resources fighting security breaches caused by CAs, and
public internet communications that are both truly secure and user-friendly are still out of reach
for most.

Therefore, this standard suggests an identity approach where every identity is controlled by its
Principal Owner and not by a 3rd party, unless the Principal Owner has delegated control to a 3rd
party. A Principal Owner is defined as the entity controlling the public key(s) which control the
identity and its identifiers upon inception of the identity.

Identity in the context of this document is to mean the following:

Identity = <Identifier(s)> + <associated data>

where associated data refers to data describing the characteristics of the identity that is associated
with the identifier(s). An example of such associated data could be an X.509 issues by a CA.

Such an approach suggests a decentralized, or at least strongly federated, infrastructure.
Decentralized in this context means that there is no single point of failure in the PKI where possibly
no participants are known to one another. And strongly federated in this context means that there
is a known, finite number of participants, without a single point of failure in the PKI. However, a
collusion of a limited number of participants in the federated infrastructure may still lead to a
compromised PKI. The consensus thresholds required for a change in the infrastructure needs to
be defined by each identity federation.

For a LSO APIs to properly operate, communication must be trusted and secure. Communications
are secured through the safe delivery of public keys tied to identities. The Principal Owner of the
identity uses a corresponding secret private key to both decrypt messages sent to them, and to
prove they sent a message by signing it with its private key.

PKI systems are responsible for the secure delivery of public keys. However, the commonly used
X.509 PKI (PKI1X) undermines both the creation and the secure delivery of these keys.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 47
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

In PKIX services are secured through the creation of keys signed by CAs. However, the complexity
of generating and managing keys and certificates in PKIX have caused companies to manage the
creation and signing of these keys themselves, rather than leaving it to their clients. This creates
major security concerns from the outset, as it results in the accumulation of private keys at a central
point of failure, making it possible for anyone with access to that repository of keys to compromise
the security of connections in a way that is virtually undetectable.

The design of X.509 PKIX also permits any of the thousands of CAs to impersonate any website
or web service. Therefore, entities cannot be certain that their communications are not being
compromised by a fraudulent certificate allowing a PITM (Person-in-the-Middle) attack. While
workarounds have been proposed, good ones do not exist yet.

Decentralized Public Key Infrastructure (DPKI) has been proposed as a secure alternative. The
goal of DPKI is to ensure that, unlike PKIX, no single third-party can compromise the integrity
and security of a system employing DPKI as a whole.

Within DPKI, a Principal Owner can be given direct control and ownership of a globally readable
identifier by registering the identifier for example in a Distributed Ledger, often referred to as a
Blockchain, or other system that guarantees data integrity without a central point of failure.
Simultaneously, Distributed Ledgers allow for the assignment of arbitrary data such as public keys
to these identifiers and permit those values to be globally readable in a secure manner that is not
vulnerable to the PITM attacks that are possible in PKIX. This is done by linking an identifier’s
lookup value to the latest and most correct public keys for that identifier. In this design, control
over the identifier is returned to the Principal Owner.

Therefore, it is no longer trivial for any one entity to undermine the security of the entire DKPI
system or to compromise an identifier that is not theirs overcoming the challenges of typical PKI.

Furthermore, DPKI requires a public registry of identifiers and their associated public keys that
can be read by anyone but cannot be compromised. As long as this registration remains valid, and
the Principal Owner is able to maintain control of their private key, no 3rd party can take ownership
of that identifier without resorting to direct coercion of the Principal Owner. Any Principal Owner
in a DPKI system must be able to broadcast a message if it is well-formed within the context of
the DPKI. Other peers in the system do not require admission control. This implies a decentralized
consensus mechanism naturally leading to the utilization of systems such as distributed ledgers.
Therefore, given two or more histories of updates, any Principal Owner must be able to determine
which one is preferred due to security by inspection. This implies the existence of a method of
ascertaining the level of resources backing a DPKI history such as the hash power in the Bitcoin
blockchain based on difficulty level and nonce.

Requirements of identifier registration in DPKI is handled differently from DNS. Although
registrars may exist in DPKI, these registrars must adhere to several requirements that ensure that
identities belong to the entities they represent. This is achieved the following way:

e Private keys must be generated in a manner that ensures they remain under the Principal
Owner’s control.
e Generating key pairs on behalf of Principal Owner must not be allowed.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 48
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

MEF W128 Draft (R1)

e Principals Owners must always be in control of their identifiers and the corresponding
public keys. However, Principal Owners may extend control of their identifier to third
parties, if they prefer, for example for public key recovery purposes.

e Extension of control of identifiers to 3rd parties must be an explicit, informed decision by
the Principal Owner of such identifier.

e Private keys must be stored and/or transmitted in a secure manner.

e No mechanism should exist that would allow a single entity to deprive a Principal Owner
of their identifier without their consent. This implies that:

o Once a namespace for an identity is created it must not be possible to destroy it.

o Namespaces in a DPKI must not contain blacklisting mechanisms that would allow
anyone to invalidate identifiers that do not belong to them.

o Once set, namespace rules within a DPKI must not be altered to introduce any new
restrictions for renewing or updating identifiers. Otherwise, it would be possible to
take control of identifiers away from Principals Owners without their consent.

e The rules for registering and renewing identifiers in a DPKI must be transparent and
expressed in simple terms.

Note that if registration is used as security to an expiration or other policy, the Principal Owner
must be explicitly and timely warned that failure to renew the registration on time could result in
the Principal Owner losing control of the identifier.

e Also, within a DPKI, processes for renewing or updating identifiers must not be modified
to introduce new restrictions for updating or renewing an identifier, once issued.

e Finally, within a DPKI all network communications for creating, updating, renewing, or
deleting identifiers must be sent via a non-centralized mechanism. This is necessary to
ensure that a single entity cannot prevent identifiers from being updated or renewed.

While the above might not yet be common practice, DPKI mitigates the PKIX threat model, and
is either already in use as with the state government of British Columbia in Canada, or under active
development and regulatory consideration as within EU countries such as Germany to meet the
EU’s General Data Privacy Regulation directive or with the Department of Homeland Security in
the US.

MEF W128 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the Page 49
Draft (R1) following statement: "Reproduced with permission of MEF Forum." No user of this document is
authorized to modify any of the information contained herein.

	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Release Notes
	5 Compliance Levels
	6 Introduction
	7 MEF LSO Security Architecture
	7.1 MEF LSO API Security Architecture Prerequisites
	7.2 Supported Authentication Frameworks and their Threat Models
	7.3 Consuming Service Provider (SP)-owned Resources from another SP
	7.4 Hybrid Flow Request with Intent Id
	7.5 Hybrid Grant Flow Parameters
	7.5.1 Minimum Conformance Requirements
	7.5.1.1 Overview
	7.5.1.2 Example for minimum conformance hybrid grant flow profiles
	7.5.1.2.1 HTTP Request Example
	7.5.1.2.2 Request JWS/JWE
	7.5.1.2.3 id_token returned
	7.5.1.2.4 id_token returned

	8 JWT Security Suite Information v1.0
	8.1 General Guidance for JWT Best Practice
	8.2 JWKS Endpoints
	8.3 General outline for creating a JWS
	8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS
	8.3.2 Step 2: Form the JOSE Header
	8.3.3 Step 3: Form the payload to be signed
	8.3.4 Step 4: Sign and encode the payload
	8.3.5 Step 5: Assemble the JWS

	8.4 General Outline for creating a JWE
	8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE
	8.4.2 Step 2: Form the JOSE Header of the JWE
	8.4.3 Step 3: Form the encryption key, initialization vector and AAD
	8.4.4 Step 4: Form the JWE Ciphertext and final JWE

	9 LSO API Payload Authenticity
	10 Implementation Guide (Non-Normative)
	10.1 Overview
	10.2 Specified Behavior
	10.2.1 Client Types
	10.2.2 Grant Types
	10.2.2.1 OIDC Hybrid Flow (response_type = code id_token)
	10.2.2.2 Client Credentials Grant Type using multiple scopes (scope = specific functions)

	10.2.3 Access Tokens
	10.2.4 Refresh Tokens
	10.2.5 ID Tokens
	10.2.6 Authorization Codes

	10.3 Non-Specified Behavior
	10.3.1 Client Types
	10.3.2 Grant Types
	10.3.2.1 OIDC Hybrid Flow (response_type = code id_token token or response_type = code token)
	10.3.2.2 OIDC Implicit Flow (response_type=id_token token or response_type=id_token)
	10.3.2.3 Client Credentials Grant Type (scope=openid email profile address phone)

	10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token)
	10.3.3.1 Authorization Code
	10.3.3.2 ID Token
	10.3.3.3 Access Token
	10.3.3.4 Refresh Token

	10.4 Success Flows
	10.4.1 Quote API Specification
	10.4.2 Client Credentials Grant Type (OAuth 2.0)
	10.4.2.1 Summary

	10.4.3 OIDC Hybrid Flow
	10.4.3.1 Summary

	10.4.4 HTTP Request and Response Examples
	10.4.4.1 Step 1 – Request Quote Initiation
	10.4.4.2 Step 2 – Setup Single Quote Initiation
	10.4.4.3 Step 3 - Authorize Consent
	10.4.4.4 Step 4 – Create Quote-Submission
	10.4.4.5 Step 5 – Get Quote-Submission Status

	10.5 Edge Cases (Non-Normative)
	10.5.1 Buyer Consent Authorization Interrupt with Seller

	11 References
	Appendix A Why Decentralized Public Key Infrastructure? (Informative)

