
 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 

authorized to modify any of the information contained herein. 

 

 

 

 

Draft Standard 

MEF W128 Draft (R1) 

 

 

LSO API Security Profile – Implementer’s Guide 

 

 

October 2021 

 

This draft represents MEF work in progress and is 
subject to change. 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 

authorized to modify any of the information contained herein. 

 

 

Disclaimer 

© MEF Forum 2021. All Rights Reserved. 

The information in this publication is freely available for reproduction and use by any recipient 

and is believed to be accurate as of its publication date. Such information is subject to change 

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume 

responsibility to update or correct any information in this publication. No representation or 

warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or 

applicability of any information contained herein and no liability of any kind shall be assumed by 

MEF as a result of reliance upon such information. 

The information contained herein is intended to be used without modification by the recipient or 

user of this document. MEF is not responsible or liable for any modifications to this document 

made by any other party. 

The receipt or any use of this document or its contents does not in any way create, by implication 

or otherwise: 

a) any express or implied license or right to or under any patent, copyright, trademark or 

trade secret rights held or claimed by any MEF member which are or may be associated 

with the ideas, techniques, concepts or expressions contained herein; nor 

b) any warranty or representation that any MEF members will announce any product(s) 

and/or service(s) related thereto, or if such announcements are made, that such 

announced product(s) and/or service(s) embody any or all of the ideas, technologies, or 

concepts contained herein; nor 

c) any form of relationship between any MEF member and the recipient or user of this 

document. 

Implementation or use of specific MEF standards, specifications, or recommendations will be 

voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF 

Forum. MEF is a non-profit international organization to enable the development and worldwide 

adoption of agile, assured and orchestrated network services. MEF does not, expressly or 

otherwise, endorse or promote any specific products or services. 

 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 1 

 

Table of Contents 

1 List of Contributing Members ........................................................................................... 4 

2 Abstract ................................................................................................................................ 4 

3 Terminology and Abbreviations ........................................................................................ 5 

4 Release Notes ....................................................................................................................... 6 

5 Compliance Levels .............................................................................................................. 7 

6 Introduction ......................................................................................................................... 7 

7 MEF LSO Security Architecture ..................................................................................... 11 

7.1 MEF LSO API Security Architecture Prerequisites ........................................................ 11 
7.2 Supported Authentication Frameworks and their Threat Models ................................... 13 
7.3 Consuming Service Provider (SP)-owned Resources from another SP .......................... 15 
7.4 Hybrid Flow Request with Intent Id ................................................................................ 18 
7.5 Hybrid Grant Flow Parameters ........................................................................................ 19 

7.5.1 Minimum Conformance Requirements.................................................................................. 19 

8 JWT Security Suite Information v1.0 ............................................................................. 28 

8.1 General Guidance for JWT Best Practice ........................................................................ 29 
8.2 JWKS Endpoints.............................................................................................................. 29 
8.3 General outline for creating a JWS.................................................................................. 29 

8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS ............. 29 
8.3.2 Step 2: Form the JOSE Header .............................................................................................. 29 
8.3.3 Step 3: Form the payload to be signed ................................................................................... 30 
8.3.4 Step 4: Sign and encode the payload ..................................................................................... 30 
8.3.5 Step 5: Assemble the JWS ..................................................................................................... 30 

8.4 General Outline for creating a JWE ................................................................................ 31 
8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE............. 31 
8.4.2 Step 2: Form the JOSE Header of the JWE ........................................................................... 32 
8.4.3 Step 3: Form the encryption key, initialization vector and AAD .......................................... 33 
8.4.4 Step 4: Form the JWE Ciphertext and final JWE .................................................................. 34 

9 LSO API Payload Authenticity........................................................................................ 34 

10 Implementation Guide (Non-Normative) ....................................................................... 36 

10.1 Overview ......................................................................................................................... 36 
10.2 Specified Behavior .......................................................................................................... 36 

10.2.1 Client Types ........................................................................................................................... 36 
10.2.2 Grant Types ............................................................................................................................ 36 
10.2.3 Access Tokens ....................................................................................................................... 37 
10.2.4 Refresh Tokens ...................................................................................................................... 37 
10.2.5 ID Tokens............................................................................................................................... 37 
10.2.6 Authorization Codes .............................................................................................................. 37 

10.3 Non-Specified Behavior .................................................................................................. 37 
10.3.1 Client Types ........................................................................................................................... 37 
10.3.2 Grant Types ............................................................................................................................ 37 
10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token) .............. 38 

10.4 Success Flows .................................................................................................................. 38 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 2 

 

10.4.1 Quote API Specification ........................................................................................................ 38 
10.4.2 Client Credentials Grant Type (OAuth 2.0) ........................................................................... 39 
10.4.3 OIDC Hybrid Flow ................................................................................................................ 39 
10.4.4 HTTP Request and Response Examples ................................................................................ 40 

10.5 Edge Cases (Non-Normative) .......................................................................................... 45 
10.5.1 Buyer Consent Authorization Interrupt with Seller ............................................................... 45 

11 References .......................................................................................................................... 45 

Appendix A Why Decentralized Public Key Infrastructure? (Informative) ...................... 47 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 3 

 

List of Figures 

Figure 1 – Example Authentication Flow ....................................................................................... 9 
Figure 2 – Example Authorization Framework with Federation .................................................. 10 
Figure 3 – MEF LSO Security Architecture ................................................................................. 15 
Figure 4 – HTTP Request – Hybrid Grant Flow........................................................................... 22 
Figure 5 – Request JWS/JWE ....................................................................................................... 23 
Figure 6 – id_token Return ........................................................................................................... 23 
Figure 7 – Another Response ........................................................................................................ 24 
Figure 8 – Client Credential Type Using Multiple Scopes ........................................................... 36 
Figure 9 – Sample Quote API OAuth2/OIDC Authentication/Authorization Flow ..................... 39 
 

List of Tables 

Table 1 – Terminology and Abbreviations ..................................................................................... 6 
Table 2 – Minimum Conformance ................................................................................................ 22 
Table 3 – ID Token Claims Details .............................................................................................. 28 
Table 4 – Forming the JOSE Header ............................................................................................ 30 
Table 5 – Signing the JSON Payload ............................................................................................ 30 
Table 6 – Forming the JOSE Header of the JWE ......................................................................... 33 
Table 7 – The Issuer ...................................................................................................................... 34 
Table 8 – Message Payload Request Required Elements ............................................................. 35 
Table 9 – Non-Base64 JWT client_assertion................................................................................ 40 
Table 10 – Single Quote Initiation ................................................................................................ 41 
Table 11 – Non-Base64-encoded Example of the Request Parameter Object.............................. 42 
Table 12 – ID Token Example ...................................................................................................... 42 
Table 13 – Non-Base64 JWT Client Assertion............................................................................. 43 
Table 14 – Non-Base64 JWT Quote Submission ......................................................................... 44 
Table 15 – Non-Base64 JWT Quote Submission Status .............................................................. 44 
Table 16 – Buyer Consent Authorization Interruption ................................................................. 45 
 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 4 

 

1 List of Contributing Members 

The following members of the MEF participated in the development of this document and have 

requested to be included in this list. 

• To be filled out before Letter Ballot 

2 Abstract 

This document defines the security profile, security approaches and security architecture for LSO 

API security using OAuth2 and OIDC within either a centralized or federated identity provider 

framework. 

The intended audience of this document is senior IT security professionals in the telecom industry. 

The document first defines the LSO API security architecture and conformance requirements to 

that architecture. The standard then defines the following JSON security components: 

• JWT Best Practices for LSO API Security 

• JWKS Endpoints for cryptographic signatures and their verifications 

• Structure and conformance requirements for JWSs and JWEs as used in the LSO API 

Security architecture 

• LSO API Payload Authenticity 

Lastly, this document lays out a non-normative implementer’s guide for applying the LSO API 

security profile and architecture to LSO APIs’ calls in the following order: 

• Specified and Unspecified LSO API Behavior 

• Success flows for LSO API authentication and authorization 

• A brief discussion of common implementation edge cases  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 5 

 

3 Terminology and Abbreviations 

This section defines the terms used in this document. In many cases, the normative definitions to 

terms are found in other documents. In these cases, the third column is used to provide the 

reference that is controlling, in other MEF or external documents. 

In addition, terms defined in MEF 10.4 [20] are included in this document by reference and are 

not repeated in the table below. 

Term Definition Reference 

Account Information Service 

Providers 

Account Information Service Providers are 

authorized entities to retrieve account data provided 

by service providers. 

Open Banking [25] 

AISP Account Information Service Provider Open Banking [25] 

API Application Program Interface MEF 55.1 [21] 

Application Program 

Interface 

A software intermediary that allows two applications 

to talk to each other. 

MEF 55.1 [21] 

DID Decentralized Identifier W3C DIDs [32] 

Decentralized Identifier A globally unique persistent identifier that does not 

require a centralized registration authority and is 

often generated and/or registered cryptographically. 

W3C DIDs [32] 

FAPI Financial-grade API  OpenID FAPI [31] 

Financial-grade API An industry-led specification of JSON data schemas, 

security, and privacy protocols to support use cases 

for commercial and investment banking accounts as 

well as insurance and credit card accounts. 

OpenID FAPI [31] 

JavaScript Object Notation A lightweight data-interchange format. ECMA JSON [2] 

JOSE JSON Object Signing and Encryption IANA JOSE [3] 

JSON JavaScript Object Notation ECMA JSON [2] 

JSON Web Encryption Encrypted content represented using JSON-based 

data structures. 

IETF RFC 7516 [14] 

JSON Web Key Set A set of keys containing the public keys used to 

verify any JSON Web Token (JWT) issued by the 

authorization server and signed using an approved 

signing algorithm such as the recommended RS256 

(RSA signature with sha-256 hashing). 

Auth0 JWKS [1] 

JSON Web Signature Represents content secured with digital signatures or 

Message Authentication Codes (MACs) using JSON-

based data structures. 

IETF RFC 7515 [13] 

JSON Web Token An open, industry standard method for representing 

claims securely between two parties. 

IETF RFC 7519 [16] 

JWE JSON Web Encryption IETF RFC 7516 [14] 

JWKS JSON Web Key Set Auth0 JWKS [1] 

JWS JSON Web Signature IETF RFC 7515 [13] 

JWT JSON Web Token IETF RFC 7519 [16] 

LSO Lifecycle Service Orchestration MEF 55.1 [21] 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 6 

 

Term Definition Reference 

OAuth2 OAuth 2.0 focuses on client developer simplicity 

while providing specific authorization flows for web 

applications. The OAuth2.0 Framework is defined in 

RFC 6749 

IETF RFC 6749 [11] 

OIDC OpenID Connect OpenID Connect [28] 

OpenID Connect A simple identity layer on top of the OAuth 2.0 

protocol. It allows Clients to verify the identity of the 

End-User based on the authentication performed by 

an Authorization Server, as well as to obtain basic 

profile information about the End-User in an 

interoperable and REST-like manner. 

OpenID Connect [28] 

Relying Party An OAuth 2.0 Client application that requires user 

authentication and claims from an OpenID Connect 

Provider. 

OpenID Connect [28] 

Representational State 

Transfer 

An architectural style for distributed hypermedia 

systems 

Fielding 2000 [4] 

REST Representational State Transfer  Fielding 2000 [4] 

RP Relying Party  OpenID Connect [28] 

Software Statement 

Assertion 

A JSON Web Token (JWT) containing client 

metadata about an instance of client software. This is 

used for OpenID Dynamic Client Registration. 

IETF SSA [8] 

Security Domain A domain that implements a security policy and is 

administered by a single authority. 

CNSSI 4009 [3] 

SSA Software Statement Assertion IETF SSA [8] 

Third Party Provider Account Information Service Providers Open Banking [25] 

TPP Third Party Provider Open Banking [25] 

Trust Domain Security Domain This document 

VC Verifiable Credential W3C VCDM [33] 

Verifiable Credential A tamper-evident credential that has authorship that 

can be cryptographically verified. 

W3C VCDM [33] 

Table 1 – Terminology and Abbreviations 

4 Release Notes 

This draft incorporates the changes from Call for Comments Ballot #1. No known issues remain, 

however some of the standards referenced are currently in development at MEF. It is not expected 

they will change in such a way as to materially affect this document. Call for Comments Ballot #2 

is currently open and may introduce changes. 

The W3C Decentralized Identifier standard is not yet ratified – see Editor Note 1: 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 7 

 

5 Compliance Levels 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", 

and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119, RFC 

8174) when, and only when, they appear in all capitals, as shown here. All key words must be in 

bold text. 

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for 

required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT) 

are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or 

OPTIONAL) are labeled as [Ox] for optional. 

Editor Note 1: The W3C Decentralized Identifier standard is currently in the Recommended 

status before final ratification in 2021. This means the standard in its version 1 

will no longer be altered before ratification. Even though the standard may 

change when it reaches final ratification, it will not impact the use as a reference 

within this document, as there is no specific functionality dependency. 

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that MUST be 

followed if the condition(s) following the “<” have been met. For example, “[CR1]<[D38]” 

indicates that Conditional Mandatory Requirement 1 must be followed if Desirable Requirement 

38 has been met. A paragraph preceded by [CDb]< specifies a Conditional Desirable Requirement 

that SHOULD be followed if the condition(s) following the “<” have been met. A paragraph 

preceded by [COc]< specifies a Conditional Optional Requirement that MAY be followed if the 

condition(s) following the “<” have been met. 

6 Introduction 

In a now predominantly digital world, the Telecom industry is not only faced with exponential 

new business opportunities crossing and blurring traditional lines between industries, but also 

facing exponential digital threats both from outside as well as within security perimeters as the 

recent Solar Winds and Kaseya security breaches impacting thousands of companies and dozens 

of governments amply demonstrate. Cyber criminals, often operating under the direction of state 

actors, have demonstrated their rapid adaptability to deployed counter measures. This requires that 

companies do both advanced threat protection and regular cyber security “blocking and tackling” 

within and across enterprise trust boundaries. 

MEF has been leading the industry in B2B automation standards, helping companies to take out 

operating costs and allowing them to focus on the revenue side of the business. However, the 

current B2B business automation standards as expressed through the LSO APIs are lacking basic 

cyber security standards – cyber security “blocking and tackling” – and advanced threat protection. 

Through the W118 project to establish a Zero Trust Framework standard, MEF is greatly 

supporting its members in establishing advanced threat protections for their environments. In fact, 

US President Biden has called out the implementation of Zero Trust Frameworks as mandatory for 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 8 

 

US agency systems in June of 2021, highlighting the enormous attention placed on Zero Trust 

Frameworks on a global scale. 

One key prerequisite for a Zero Trust Framework is the implementation of normal cyber security 

“blocking and tackling” standards as foundational building blocks such as authentication and 

authorization across enterprise trust boundaries within the context of other MEF standards such as 

LSO APIs. 

Therefore, this standard sets out to provide such context-specific cyber security “blocking and 

tackling” by providing specific cyber security functional requirements and mechanisms that help 

to produce consistently secure LSO API based communications between organizations across trust 

boundaries. This standard’s aim is to gain alignment on the detailed LSO API security mechanisms 

for interface reference points including Sonata, Interlude, Cantata and Allegro. 

This document provides a baseline for authentication (verifying the identity of a service requester) 

and authorization (verifying the allowed scope of access to service provider resources of a service 

requester) across enterprise trust boundaries between API consumer and provider, the threat 

models that are addressed, and a list of supported Identity frameworks that will integrate with 

access policies defined in this document. 

Note that the intended audience of this document are senior IT security professionals in the telecom 

industry.  

The scope of this document is to address the following security areas for LSO APIs: 

• Authentication Frameworks and their threat models 

• Identity Authentication 

• Access Claims Requirements 

• Authorization Framework 

• Access Claims Processing 

This standard covers OpenAPI/REST APIs. RestConf and NetConf APIs are out of scope. 

Furthermore, this standard will not address the lifecycle (provisioning/removal/updates) of 

identities and claims (access control policies). 

First, and by way to set context, accessing, requesting, and delivering a service between a Buyer 

and a Seller via LSO APIs always follows the request-response schema; the Buyer requests and 

the Seller responds at each step of LSO API access, request, and delivery. Note, that this document 

intentionally does not specify whether a Buyer and a Seller are within the same or a different 

organization. This document assumes that a Subject and a Seller are in different Trust Domains 

and, therefore, must apply the LSO API Security Framework to all services crossing trust domains 

irrespective if they are inter- or intra-organizational. A Trust Domain in the context of this 

document is equivalent to a Security Domain as defined in CNSSI 4009 [3]. 

A Trust Domain is a security domain that implements a security Policy and is administered by a 

single authority. An example of a Trust Domain is an Amazon Web Services Security Zone. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 9 

 

Second, there are three levels of LSO API security across Trust Domains, which are delineated at 

a high-level below: 

1. Transport layer security through HTTPS as described in OAuth2 using OAuth2's 

OpenAPI definitions – secure communication channel between Buyer and Seller. 

2. LSO API access security through the endpoint providing LSO API authentication and 

authorization – answering the question: Am I allowed to access a specific environment? 

3. Buyer–Seller LSO API security through function-specific scopes and associated 

authentication and authorization policies – Answering the question: Am I allowed to 

access specific functions/resources in a specific environment and do specific things with 

that function/resource? 

Transport security is considered the 1st level of security and will be aligned with the minimum 

requirements of the standards referenced in this document – OAuth2, OpenID Connect (OIDC), 

UK Open Banking and W3C Decentralized Identifiers and W3C Verifiable Credentials – and not 

further discussed in this document. 

This document will provide MEF-specific standards for the 2nd and 3rd level of security.  

To provide further context for the subsequent discussions, the document provides concrete 

examples of what is meant by the 2nd and 3rd level of security as defined above in the two figures 

below. Since the 1st level is out of scope for this document, this document does not provide an 

example. 

Figure 1 below outlines an example of LSO API Authentication, the 2nd level of security. 

 

Figure 1 – Example Authentication Flow 

The dataflow in Figure 1 is composed of the following steps: 

• Buyer’s client application presents its identity to the Seller API Gateway 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 10 

 

• The Seller’s API gateway consults with its internal and/or federated Identity providers to 

verify the identity and claims presented by the client application 

• Upon verification of claims and identity, a token is provided to the client application.  

Figure 2 below outlines an example of  Buyer–Seller LSO API security through function-specific 

scopes and associated authentication and authorization policies, 3rd level of security. 

 

Figure 2 – Example Authorization Framework with Federation 

The dataflow in Figure 2 is composed of the following steps: 

• Seller’s API Gateway verifies whether the endpoint access request is permitted for the 

Buyer’s identity presented in the request 

• If the request is allowed, the API gateway generates a bearer token and provides it to the 

Buyer’s client application 

• The client’s identity is passed through the API gateway to the seller’s LSO API endpoint 

The document’s scope is limited to the definition of the schema of the JSON Web Token (JWT) 

used to perform authentication of a Buyer and the authorization that said Buyer has to the LSO 

API endpoint the Buyer is interacting with. The treatment of the response payload sent by the 

Seller to the Buyer, or from the Buyer to the Seller, is not covered in this document. 

Payload security is part of the Zero Trust framework defined in MEF W118 [23]. It should be 

implemented to ensure both parties use verifiable means to protect the integrity of data being 

exchanged. 

Figure 2 depicts the data flows between Buyer and Seller to obtain an Access (Bearer) token, and 

how the Bearer token is used to access protected resources. 

The document is structured in the following way: 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 11 

 

1. MEF LSO Security Architecture in Section 7 with 

a. A discussion on MEF LSO API Security Architecture Prerequisites 

b. The delineation of Supported Authentication Frameworks and their threat models 

c. An outline of how to consume Service Provider (SP) owned Resources from another 

Service Provider (SP) 

d. A detailed discussion of the recommended Hybrid Grant Flow Request with Intent Id 

e. A discussion of the Hybrid Grant Flow Parameters 

2. JWT Security Suite Information v1.0 in section 8 with 

a. General Guidance for JWT Best Practice  

b.  A brief discussion of JSON Web Key Sets (JWKS) Endpoints.  

c. General outline for creating a JSON Web Signature Token (JWS) to be used in LSO 

API Security Architecture. 

d. General Outline for creating a JSON Web Signature Token (JWE), as an alternative 

to a JWS, to be used in LSO API Security Architecture. 

3. A non-normative  Implementation Guide in Section 10 with 

a. Specified and Non-specified Authentication and Authorization behavior 

b. Detailed Success Flows and examples for LSO API Authentication and Authorization 

c. Common Implementation Edge Cases 

7 MEF LSO Security Architecture 

This section details the MEF LSO Security Architecture. This document discusses the following 

aspects in sequence: 

1. Prerequisites for utilizing the MEF LSO security 

2. Supported authentication frameworks and the threat models they address 

3. MEF LSO API security architecture workflows, data models and JSON security 

information 

4. MEF LSO API security model examples & exceptions 

7.1 MEF LSO API Security Architecture Prerequisites 

Uniqueness and security of identifiers utilized in LSO APIs is particularly important to 

unambiguously identify Service Providers (SPs) and the Third-Party Providers (TPPs) as their 

delegates interacting with and through LSO APIs and to keep those interactions secure. 

Furthermore, and to facilitate automation and real time interactions within and through LSO APIs, 

discovery of identifiers and an ability to resolve them to the underlying public keys that secure 

them without having to rely on a trusted 3rd party is also critical. 

This document assumes several things to be in place before the MEF LSO API security workflows 

can successfully commence. We express them in this minimal set of prerequisites below: 

[R1] The SP or its TPP requesting access to a SP LSO API MUST have a unique 

identifier. 

[R2] Any unique identifier MUST be associated with a set of public keys. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 12 

 

This allows an SP to prove that it controls, and can, thus, authenticate the unique identifier utilized 

in the LSO API Security context of this document without a verifying 3rd party. 

[R3] Any unique identifier MUST be resolvable to its associated public keys used 

for cryptographic authentication of the unique identifier. 

This allows an SP to access the public keys used in the unique identifier authentication 

independently of the SP or TPP requesting access or any other 3rd party. 

[D1] Any unique identifier SHOULD follow the W3C DID Core specification. 

This requirement supports the self-issuance of unique identifiers that allow for cryptographically 

verifiable non-repudiation. Note that the usage of commonly used public key infrastructure (PKI) 

based on X.509 digital certificates is permissible. However, the adoption of W3C DIDs is 

encouraged based on the threat models to traditional PKI as outlined in Appendix A. 

After having discussed the minimal set of requirements on identifiers utilized in LSO APIs, it is 

important to discuss how these relate to identity and claims about facts relevant to SPs, also called 

credentials. 

[R4] A unique identifier utilized with LSO APIs MUST be linked to a Legal Entity 

of the service requesting SP or its TPP through a cryptographically signed, 

cryptographically verifiable, and cryptographically revocable credential based 

on the public keys associated with the unique identifier of the credential issuer. 

In the context of this document, a Legal Entity is an individual, organization or company that has 

legal rights and obligations. 

This document makes no assumptions as to how a legal identity establishing credential is created, 

which identity credential issuers are mutually acceptable between Buyer and Seller and how these 

identity credentials are exchanged to establish mutual trust across enterprise trust boundaries to 

perform authentication and authorization operations for LSO APIs between Buyer and Seller.  

Note that credentials utilized with LSO APIs may be self-issued. The acceptance of self-issued 

credentials is up to the SPs that need to rely on the claim(s) within a self-issued credential. 

[R5] The unique identifier of the Legal Entity of the TPP/SP MUST be the subject 

of the credential. 

[R6] The unique identifier of the issuer of the Legal Entity credential utilized in LSO 

APIs MUST have a credential linking the unique identifier of the issuer to an 

Entity accepted by the SPs. 

[D2] The credential SHOULD follow the W3C Verifiable Credential 

specification. 

[R7] A credential utilized with an LSO API MUST itself have a unique and 

resolvable identifier. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 13 

 

Note that the unique and resolvable identifier of a credential does not have to be associated with 

any cryptographic keys. 

[R8] If present, the status of a credential utilized within an LSO API MUST be 

discoverable by a party verifying the credential, the credential verifier. 

In the context of this document, a credential status signals if a credential has been revoked or not, 

and a credential verifier is defined per the W3C Verifiable Credential Standard [33]. 

[D3] A credential utilized with an LSO API SHOULD be discoverable by either 

SP. 

[R9] The presentation of a credential utilized with a LSO API MUST be 

cryptographically signed by the presenter of the credential, also known as the 

credential holder. 

See the W3C Verifiable Credential Standard for a definition of credential holder. 

[R10] If a credential holder is a SP, the holder MUST have a unique identifier that 

has been established within the LSO API security context the holder operates 

in. 

This document makes no assumptions about existing business relationships between SPs. It is in 

the purview of the relying party whether the above prerequisites are sufficient or whether 

additional requirements need to be fulfilled. An (OIDC) Relying Party is an OAuth 2.0 Client 

application that requires user authentication and claims from an OpenID Connect Provider. 

7.2 Supported Authentication Frameworks and their Threat Models 

In this standard, OAuth 2.0 will be the primary framework for API Security for MEF LSO APIs 

augmented by both centralized and federated Identity Provider frameworks utilizing JSON Web 

Tokens (JWTs) [16] for authentication and resource authorization claims following the OpenID 

Connect standard framework (OIDC) [28]. OAuth 2.0 itself is a framework which can be deployed 

in many ways. Therefore, and to securely use the OAuth 2.0 framework, a security profile must 

exist by which Service Providers (SPs) or their ThirdParty Service Providers (TPPs) are certified 

to have correctly configured their clients and servers. TPPs act as a SP authentication service 

provider when the SP has outsourced its authentication services to a vendor. 

To contextualize and motivate the usage of OAuth2 together with OIDC and the recommendations 

on authentication flows made, this document briefly discusses the threat model that OAuth2 and 

OIDC are intended to address. The threat model for OAuth2 and OIDC is documented in IETF 

RFC 6819 [12]. This document will not detail the individual attack vectors but rather detail the 

components of the attack surface and the assumptions on the attacker. 

That basic architecture and, thus three main attack surfaces, are: 

• Authentication/Authorization Servers with elements such as 

o usernames and passwords 

o client identifiers and secrets 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 14 

 

o client-specific authentication and authorization refresh tokens 

o client-specific access tokens  

o HTTPS certificates or public keys or both 

o per-authorization process data such as redirect URIs 

• Resource Servers 

o user data (out of scope) 

o HTTPS certificates or public keys or both 

o either authorization server credentials or authorization server shared secret/public key 

o access tokens 

• Client 

o client id (and client secret or corresponding client credential) which could be a W3C 

DID 

o one or more refresh (possibly persistent) tokens and access tokens 

o a typically transient per end user or other security or delegation related context 

o trusted certification authority (CA) certificates (HTTPS) or W3C Verifiable 

Credentials 

o per-authorization process data 

Note that a resource server typically has no knowledge of refresh tokens, user passwords, or client 

secrets to enable separations of concern. 

The assumptions on a potential attacker are as follows: 

• Full access to the network between the client and authorization servers and the client and 

the resource server), respectively (Buyer and Seller or vice versa). The attacker may also 

intercept any communications between Buyer and Seller.  However, the attacker is not 

assumed to have access to communication between the authorization server and resource 

server since this is within the trust boundary of Buyer and Seller. If an attacker gains 

access to either trust domain, this framework no longer applies. To mitigate such a 

scenario, a Zero Trust framework should be implemented. 

• An attacker has unlimited resources to mount an attack. 

• Two of the three parties involved in the OAuth protocol may collude to initiate an attack 

against the 3rd party. For example, the client (e.g. Buyer) and authorization server (e.g. 

Seller) may be under control of an attacker and collude to trick Buyer or Seller to gain 

access to resources. 

Given the data on the above three components we can now detail the full attack surface across all 

components: 

• Client Tokens such as Obtaining Access and Refresh Tokens or client secrets 

• Authorization Endpoints such as password phishing 

• Token Endpoints such as eavesdropping access tokens 

• Obtaining Authorization from: 

o Authorization ‘code’ 

o Implicit Grants 

o Resource Owner Password Credentials 

o Client Credentials 

• Refreshing of Access Tokens such as Refresh Token Phishing 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 15 

 

• Accessing protected resources such as Replay of Authorized Resource Server Requests 

IETF RFC 6819 [12] also lists mitigation strategies against attacks on those attack surfaces such 

as limiting the length of validity and number of uses of an Access Token. 

7.3 Consuming Service Provider (SP)-owned Resources from another SP 

 

Figure 3 – MEF LSO Security Architecture 

For context setting and completeness this document reiterates the typical OAuth2 authentication 

and authorization process for SP resources such as LSO APIs incorporating OpenID Connect 

Request Objects as JWTs containing relevant Identity Provider Information as depicted in Figure 

1. 

Step 1: SP Register Endpoint 

A TPP/SP submits a SSA through an OAuth2 client registration request to a known API endpoint 

of a SP that controls client registration for an LSO API as a resource to be accessed by the TPP/SP. 

A Software Statement Assertion (SSA) [8] is a JWT containing client metadata about an instance 

of TPP/SP client software. This is used for OpenID Connect Dynamic Client Registration. The 

SSA is used by an OAuth client to provide both informational and OAuth protocol-related 

assertions that aid OAuth infrastructure to both recognize client software, e.g., signed release hash 

and determine a client's expected requirements when accessing an OAuth-protected resource, e.g., 

required cryptographic algorithms to be used. 

If the SSA meets the OAuth2 requirements of the target SP, either Buyer or Seller, the target SP 

issues client credentials. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 16 

 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 17 

 

Step 2: SP Staging API 

When a TPP/SP wants to access an LSO API either once or repeatedly. the TPP/SP submits an 

intent to perform a specific LSO API action and why the client wants to perform such an action to 

a known API endpoint of a SP. If the request is authenticated, the client will receive a ticket back 

which is necessary to be presented in the next step. A ticket could for example be simply an Id 

such as an Intent Id. This step is recommended to provide very specific authorizations which might 

be required for regulatory reasons such as for payment. A ticket functions just like a queue number. 

Details of a ticket object and its definition are given in the Open Banking standard [26] and will 

not be repeated here. 

Step 3: SP Authorization Endpoint 

To receive an authorization token for the LSO API (not the specific function), the TPP/SP submits 

the ticket from step 2 in an authorization request to a known API endpoint of a SP. And if the 

TPP/SP is both authenticated and the ticket validated, the SP providing the LSO API will return 

an authorization code. This authorization code will be used to obtain the fine-grained authorization 

to the desired function. 

Step 4: SP Token Endpoint 

Once an authorization code to access the domain of the LSO API has been obtained by the TPP/SP, 

the TPP submits a token request to a known API endpoint of a SP containing the client credential 

and the authorization token. If there is an existing authorization policy for the LSO API associated 

with the client credential at the token endpoint, an authorization token – that the TPP/SP can access 

a very specific LSO API functional endpoint and may or may not include specific fine-grained 

authorizations and cryptographic material – and a resource token – that the TPP/SP can access a 

specific resource, typically a specific server or specific serverless function and may or may not 

include specific resource metadata and cryptographic material – are issued to the TPP/SP. Note 

that if the original intent was to access the LSO API repeatedly the authorization and resource 

tokens will be time bound and need to be refreshed. Otherwise, they are typically single use only. 

Step 5: SP Resource Server 

The TPP/SP can now finally access the detailed LSO API function on the resource server through 

a known API endpoint of a SP, by calling a single function LSO API endpoint on the resource 

server in a request containing the authorization and resource tokens and the LSO API endpoint 

payload. If the resource server validates the authorization token and the resource token, the LSO 

API request is executed, and the function specific response is generated and sent to the TPP/SP. 

There are two possible operating models that this document needs to accommodate, see figure 

above: 

• Model 1: An SP, as Buyer or Seller, is operating its own authentication and resource 

infrastructure. In this model the TPP is the SP. 

• Model 2: An SP, as Buyer or Seller, outsourced/delegated either its authentication or 

resource infrastructure or both to a 3rd party, a TPP. In this model the TPP is different 

from the SP owning the resource. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 18 

 

Note that as a prerequisite to Step 1: SP Register Endpoint, the SP receiving the registration 

request needs to have a notion of the TPP/SP and its identity submitting the request.  

Furthermore, since SPs TPP/SP client requirements are SP specific, these requirements are out of 

scope of this document as well. This means that for Step 1, this document simply refers to the 

OpenID Connect Dynamic Client Registration standard, and there in particular Section 3.1: Client 

Registration Request [28]. It is recommended that SPs follow the OpenID Connect Discovery 

standard [30] to publish their OAuth2 client requirements. 

Below, Model 2 is discussed because it is more general, and, where required, this document will 

highlight any adjustments to Model 2 to accommodate Model 1. 

See the OpenID Connect Core standard, section 6 [28] for necessary OIDC flow details not 

discussed below. 

The OpenID Connect Request object in the above figure uses the same claims’ object for 

specifying claim names, priorities, and values. However, if the request object is used, the claims 

object becomes a member in an assertion that can be signed and encrypted, allowing the SP to 

authenticate the request directly (Model 1) or from its TPP (Model 2) and ensure it has not been 

tampered with. The OpenID Connect request object can either be passed as a query string 

parameter, a JWS or a JWE or can be referenced at a protected endpoint. 

In addition to specifying a ticket, the TPP (SP) can optionally require a minimum strength of 

authentication context or request to know how long ago the requesting SP was authenticated. 

Multiple tickets could be passed, if necessary. Note, this feature is fully specified in the OpenID 

Connect standard, therefore, there is no need for any proprietary implementations. 

Full accountability is available as required by all participants. Not only can the SP prove that they 

received the original request from the TPP (Model 2) or the other SP (Model 1), but the TPP 

(Model 2) or SP (Model 1) can prove that the access token that comes back was the token that was 

intended to be affiliated to this specific request.  

7.4 Hybrid Flow Request with Intent Id 

Within the OpenID Connect Framework there are three types of authentication flows: 

1. Authentication Code Flow 

2. Implicit Flow 

3. Hybrid Flow 

These flows will be combined with OpenID Connect claims to integrate authorization within 

authentication flows. 

The Hybrid Flow incorporating an Intent is the recommended approach because it not only 

addresses the attacks outlined in IETF RFC 6819 [12] but also Identity Provider Mix Up attacks. 

A so called ‘cut and pasted code attack’ where the attacker exchanges the ‘code’ in the 

authorization response with the victim’s ‘code’ obtained by the attacker through another attack. 

The attacker uses the ‘code’ in a session to feed to the client to obtain an access token with the 

victim’s privileges. Furthermore, registering an intent simplifies audit reporting when the API 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 19 

 

accesses sensitive data or triggers sensitive operations. This flow has also been adopted by the 

Open Banking consortium. Since authorization claims will be included in the flow after 

authentication, it is called Hybrid Grant Flow.  

This section describes parameters that should be used with a hybrid grant flow request such that 

an intent id can be passed from the TPP/SP to a SP. 

Prior to this step: 

• The TPP/SP (Buyer) would have been granted a credential by another SP (Seller) 

• The Seller would have applied an authorization policy to the Buyer credential 

• The TPP/SP would have registered a client application (Step 1 from section 7.3) 

• The TPP/SP would have already registered an intent with a SP (Step 2 from section 7.3) 

• The SP would have responded with an intent id (Step 2 from section 7.3). 

7.5 Hybrid Grant Flow Parameters 

7.5.1 Minimum Conformance Requirements 

7.5.1.1 Overview 

This section describes the minimal set of authorization request parameters that an SP must 

support. The technical definitive reference is specified in OpenID Connect Core Errata 1 

Section 6.1 (Request Object) [28]. 

[R11] All standards and guidance MUST be followed as per the OpenID Connect 

(OIDC) specification. 

[R12] A SP MUST support the issuance of OIDC ID Tokens as defined in the OIDC 

specification. 

[O1] A TPP/SP MAY request that an ID token is issued. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 20 

 

Parameter MEF LSO Notes 

response_type Required OAuth2 specification requires that this parameter is provided in an 

OAuth2 authentication workflow. The value is set to ‘code id_token’, 

‘code id_token token’ or ‘code’. 

[R13] TPPs/SPs MUST provide this parameter and set its value to one 

of the three above depending on what the SP supports as 

described in its well-known configuration endpoint. 

See definition of the well-known configuration endpoint in the OpenID 

Connect Discovery 1.0 specification [30]. 

[R14] The values for these configuration parameters MUST match 

those in the OIDC Request Object, if present. 

Note: Risks have been identified with the “code” flow that can be 

mitigated with the hybrid flow. The MEF LSO API Profile allows SPs 

to indicate what grant types are supported using the standard well-

known configuration endpoint.  

[R15] (OIDC) Relying Parties (RPs) MUST take care in validating 

that code swap attacks have not been attempted. 

An (OIDC) Relying Party is an OAuth 2.0 Client application that 

requires user authentication and claims from an OpenID Connect 

Provider. 

client_id Required [R16] TPPs/SPs MUST provide this value and set it to the client id 

issued to them by the SP to which the authorization code grant 

request is being made. 

[D4] The client_id SHOULD be self-issued by the TPP 

as per the W3C DID standard, if it has been linked 

to either directly or indirectly through a verifiable 

credential as per the W3C Verifiable Credential 

standard  

redirect_uri Required [R17] TPPs/SPs MUST provide the URI to which they want the 

resource owner's user agent to be redirected to after 

authorization. 

[R18] This URI MUST be a valid, absolute URL or resolvable URI 

that was registered during Client Registration with the SP 

[R19] In case the client_id is a DID, the URI MUST be a Service 

Endpoint in the DID document of the registering client_id. 

scope Required [R20] TPPs/SPs MUST specify the scope that is being requested. 

[R21] At a minimum, the scope parameter MUST contain openid 

[R22] The scopes MUST be a sub-set of the scopes that were 

registered during client registration with the SP. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 21 

 

state Recommended [O2] TPPs/SPs MAY provide a state parameter. 

The state parameter may be of any format, and is opaque to the SP. 

[CR1]<[O1] If the state parameter is provided, the SP MUST play-

back the value in the redirect to the TPP/SP. 

[D5] SPs SHOULD include the s_hash – the hash of 

the state as the state parameter. 

request Required [R23] The TPP MUST provide a value for this parameter. 

[R24] The parameter MUST contain a JWS or JWE that is signed by 

the TPP. 

[R25] The JWS/JWE payload MUST consist of a JSON object 

containing an OIDC request object as per OIDC Core 

specification 6.1. 

[R26] The OIDC request object MUST contain a claims section that 

includes an ID Token having as a minimum the following 

element: 

• meflso_intent_id: that identifies the intent id for which 

this authorization is requested 

[R27] The intent id MUST be the identifier for an intent returned by 

the SP to TPP that is initiating the authorization request. 

[O3] acr_values: TPPs MAY provide a space-separated string that 

specifies the acr values that the Authorization Server is being 

requested to use for processing this Authentication Request, 

with the values appearing in order of preference. 

[R28] The acr_values MUST be one of: 

• urn:meflso:sca: To indicate that secure customer 

authentication must be carried out 

• urn:meflso:ca: To request that the customer is 

authenticated without using a SCA, if permitted 

[O4] The OIDC request object MAY contain claims to be retrieved 

via the UserInfo endpoint only if the endpoint is made 

available and listed on the well-known configuration endpoint 

on the authorization server. 

[O5] The OIDC request object MAY contain additional claims to be 

requested should the SPs authorization server support them; 

these claims will be listed on the OID well-known 

configuration endpoint. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 22 

 

Table 2 – Minimum Conformance 

7.5.1.2 Example for minimum conformance hybrid grant flow profiles 

The examples below are non-normative. 

7.5.1.2.1 HTTP Request Example 

GET /authorize? 

response_type=code%20id_token 

&client_id=s6BhdRkqt3 

&state=af0ifjsldkj& 

&scope=openid 

&nonce=n-0S6_WzA2Mj 

&redirect_uri=https://api.mytpp.com/cb 

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsDuushgpwp0E.5leGFtcGxlIiwianRpIjoiM....J

leHAiOjE0.olnx_YKAm2J1rbpOP8wGhi1BDNHJjVqsDuushgpwp0E 

Figure 4 – HTTP Request – Hybrid Grant Flow 

7.5.1.2.2 Request JWS/JWE  

Note that the Example below is without Base64 encoding. Also note that "essential" is an optional 

property. It indicates whether the Claim being requested is an Essential Claim. If the value is true, 

this indicates that the Claim is an Essential Claim. For instance, the Claim request: 

"auth_time": {"essential": true} 

can be used to specify that it is Essential to return an auth_time Claim Value. If the value is false, 

it indicates that it is a Voluntary Claim. The default is false.  

By requesting Claims as Essential Claims, the RP indicates to the SP that releasing these Claims 

will ensure a smooth authorization for the specific task requested by a SP.  

Note that even if the Claims are not available because the SP did not authorize their release or they 

are not present, the authorization server must not generate an error when Claims are not returned, 

whether they are Essential or Voluntary, unless otherwise specified in the description of the 

specific claim, see the OIDC Core Specification. 

{ 

    "alg": "RS256", 

    "kid": "GxlIiwianVqsDuushgjE0OTUxOTk" 

} 

. 

{ 

    "aud": "https://api.acme.com", 

    "iss": "s6BhdRkqt3", 

    "response_type": "code id_token", 

    "client_id": "s6BhdRkqt3", 

    "redirect_uri": "https://api.mytpp.com/cb", 

     

http://openid.net/specs/openid-connect-core-1_0.html#Claims


 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 23 

 

    "state": "af0ifjsldkj", 

    "nonce": "n-0S6_WzA2Mj", 

    "max_age": 86400, 

    "claims": 

    { 

      "userinfo": 

      { 

       "meflso_intent_id": {"value": "urn:acme-intent-58923", "essential": true} 

      }, 

      "id_token": 

      { 

       "meflso_intent_id": {"value": "urn-acme-intent-58923", "essential": true}, 

       "acr": {"essential": true, 

                "values": ["urn:meflso:sca", 

                     "urn:meflso:ca"]}} 

      } 

    } 

} 

. 

<<signature>> 

Figure 5 – Request JWS/JWE 

7.5.1.2.3 id_token returned  

Note that Sub is being populated with an EphemeralId of the IntentId. 

{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

   "iss": "https://api.acme.com", 

   "iat": 1234569795, 

   "sub": "urn-acme-quote-58923", 

   "acr": "urn:meflso:ca", 

   "meflso_intent_id": "urn-acme-quote-58923", 

   "aud": "s6BhdRkqt3", 

   "nonce": "n-0S6_WzA2Mj", 

   "exp": 1311281970, 

   "s_hash": "76sa5dd", 

   "c_hash": "asd097d" 

  } 

. 

{ 

<<Signature>> 

} 

Figure 6 – id_token Return 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 24 

 

7.5.1.2.4 id_token returned  

Identity Claims and IntentId with sub being populated with an UserIdentifier 

{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

   "iss": "https://api.acme.com", 

   "iat": 1234569795, 

   "sub": "ralph.bragg@raidiam.com", 

   "acr": "urn:meflso:sca", 

   "address": "2 Thomas More Square", 

   "phone": "+447890130559", 

   "meflso_intent_id": "urn-acme-quote-58923", 

   "aud": "s6BhdRkqt3", 

   "nonce": "n-0S6_WzA2Mj", 

   "exp": 1311281970, 

   "s_hash": "76sa5dd", 

   "c_hash": "asd097d" 

  } 

. 

{ 

<<Signature>> 

} 

Figure 7 – Another Response 

Implementers should note that ID Token Claims details should follow the JWT Best Current 

Practices [6] section 3.1. 

The different token data properties are listed in the table below. The last column describes what 

the value of the field means. 

Field Definition Notes Value(s) 

iss Issuer of the 

token 

Token issuer will be specific to the business. 

[R29] The iss MUST be JSON string that 

represents the issuer identifier of the 

authorization server as defined in RFC 

7519 [16]. 

When OAuth 2.0 is used, the value is the 

redirection URI. When OpenID Connect is used, 

the value is the issuer value of the authorization 

server. 

A resolvable URI 

such as a URL or a 

DID  

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519


 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 25 

 

sub Token subject 

identifier 

[R30] Sub MUST be a unique and non-repeating 

identifier for the subject, i.e. the Buyer. 

[R31] The sub identifier MUST be the same when 

created by the Authorization and Token 

endpoints during the Hybrid flow. 

Non-Identity 

Services Providers 

will use the 

Intent/Consent ID 

for this field. 

 

Identity Services 

Providers will 

choose a value at the 

discretion of the 

SP's. 

meflso_intent_id Intent ID of the 

originating 

request 

[R32] meflso_intent_id MUST be a unique and 

non-repeating identifier containing the 

intent_id. 

[O6] This field MAY duplicate the value in 

“sub” for many providers. 

Use the 

Intent/Consent ID 

for this field. 

aud Audience that 

the ID token is 

intended for 

[R33] OpenID Connect protocol mandates aud 

MUST include the client ID of the 

TPP/SP. 

See also the FAPI Read Write / OpenID Standard 

[31]. 

See requirement 

exp Token 

expiration 

date/time 

[R34] Exp MUST be included in the Claim ID 

token 

The validity length will be at the discretion of the 

SPs such that it does not impact the functionality 

of the APIs. For example, an expiry time of 1 

second is insufficient for all Resource Requests. 

Expressed as an 

epoch, i.e., number 

of seconds from 

1970-01-01T0:0:0Z 

as measured in 

UTC. RFC 7519 

[16] 

iat Token issuance 

date/time 

[R35] The iat property MUST be included in the 

Claim ID token 

Expressed as an 

epoch, i.e., number 

of seconds from 

1970-01-01T0:0:0Z 

as measured in 

UTC. 
auth_time Date/time when 

End User was 

authorised 

[O7] The max_age property MAY be requested 

in the Claim ID Token. 

[CR2]< [O2] If the max_age request is made or 

max_age is included as an 

essential claim, auth_time MUST 

be supported by the SP. 

Expressed as an 

epoch, i.e., number 

of seconds from 

1970-01-01T0:0:0Z 

as measured in 
UTC. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 26 

 

Nonce Used to help 

mitigate against 

replay attacks 

[R36] The nonce property MUST be in the Claim 

ID Token 

The nonce value is passed in as a Request 

parameter. 

[R37] The nonce MUST be replayed in the ID 

token when the token is utilized in a 

subsequent access request. 

 

acr Authentication 

Context Class 

Reference 

[R38] The acr property MUST be included in the 

Claim ID Token  

The acr is an identifier that qualifies what 

conditions were satisfied when the authentication 

was performed. 

[D6] The acr SHOULD correspond 

to one of the values requested 

by the acr_values field on the 

request. However, even if not 

present on the request, the SP 

should populate the acr with a 

value that attests that the SP 

performed or NOT performed 

an appropriate level of 

authentication such that the SP 

believes it has met the 

requirement for “Strong 

Customer Authentication” 

(SCA). 

SPs that do not wish to provide this as a claim 

should remove it from the well-known 

configuration endpoint. 

As per OIDC Core, marking a claim as “essential” 

and a SP cannot fulfil it, then an error should not 

be generated. 

The values to be 

provided will be 

urn:meflso:ca or 

urn:meflso:sca. 

amr Authentication 

Methods 

References 

The amr property specifies the methods that are 

used in the authentication. For example, this field 

might contain indicators that a password was 

supplied. 

Note that the industry direction is to consolidate 

on Vectors of Trust: RFC 8485 [18]. Hence, this 

field may be replaced shortly. Also note that amr 

does not give the flexibility to address all the 

actual particulars of both the authentication and 

the identity that is utilized. 

 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 27 

 

azp Authorized 

party 

The azp property is the authorized party to which 

the ID Token was issued.  

[O8] The azp property MAY be present in the 

Claim ID Token. 

[CR3]<[O3] If the azp property is present, it 

MUST contain the OAuth 2.0 Client 

ID of this party.  

This Claim is only needed when the ID Token has 

a single audience value, and that audience is 

different than the authorized party. It may be 

included even when the authorized party is the 

same as the sole audience.  

A resolvable URI 

such as a URL or a 

DID 

s_hash State Hash 

Value [D7] The s_hash property 

SHOULD be present in the 

Claim ID Token 

The state hash, s_hash, in the ID Token is to protect 

the state value. 

Its value is the 

base64url encoding 

of the left-most half 

of the hash of the 

octets of the ASCII 

representation of the 

state value, where 

the hash algorithm 

used is the hash 

algorithm used in 

the algHeader 

Parameter of the ID 

Token's JOSE 

Header. For 

instance, if the alg is 

HS512, hash the 

code value with 

SHA-512, then take 

the left-most 256 

bits and base64url 

encode them. The 

s_hashvalue is a 

case sensitive string. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 28 

 

at_hash Access Token 

Hash Value 

[O9] The Claim ID Token MAY be issued from 

the Authorization Endpoint with an 

access_token value. 

[CR4]<[O4] The at_hash property MUST be 

included in the Claim ID Token 

Its value is the 

base64url encoding 

of the left-most half 

of the hash of the 

octets of the ASCII 

representation of the 

access_token value, 

where the hash 

algorithm used is the 

hash algorithm used 

in the alg Header 

Parameter of the ID 

Token's JOSE 

Header. For 

instance, if the alg is 

RS256, hash the 

access_token value 

with SHA-256, then 

take the left-most 

128 bits and 

base64url encode 

them. The at_hash 

value is a case 

sensitive string. 

c_hash Code hash 

value. 

[O10] The Claim ID Token MAY be issued from 

the Authorization Endpoint with a code. 

[CR5]<[O5] The c_hash property MUST be 

included in the Claim ID Token 

Its value is the 

base64url encoding 

of the left-most half 

of the hash of the 

octets of the ASCII 

representation of the 

code value, where 

the hash algorithm 

used is the hash 

algorithm used in 

the alg Header 

Parameter of the ID 

Token's JOSE 

Header. 

Table 3 – ID Token Claims Details 

8 JWT Security Suite Information v1.0 

This document utilizes, and where required concretizes for the usage with this standard, the JOSE 

standard v1.0 [5]. Note that all JOSE standard V1.0 requirements are carried over as a minimal 

requirement set in this document unless otherwise explicitly indicated in this document. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 29 

 

8.1 General Guidance for JWT Best Practice 

See RFC 8725 [19] for the recommended JWT approach. 

8.2 JWKS Endpoints 

Upon issuance of a certificate from a JWKS [1] hosting service, a JWK Set will be created or 

updated for a given TPP/SP. 

[D8] All participants SHOULD include the "kid" and "jku" properties of the key 

that was used to sign the payloads in the JWKS issuance request.  

[D9] The JKU property SHOULD be considered a hint only and relying parties 

should derive and then validate wherever possible the appropriate JWKS 

endpoint for the message signer.  

See Auth0 JWKS [1], section 4.1 

Note that as certificates are added and removed the JWKS endpoint will be updated automatically. 

8.3 General outline for creating a JWS 

8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS 

[R39] As the JWS is used for non-repudiation, it MUST be signed using one of JWS 

issuer's private keys. 

[R40] The private key MUST have been used by the issuer to get a signing certificate 

issued from an identity provider.  

[R41] The signing certificate MUST be verifiably valid at the time of creating the 

JWS. 

8.3.2 Step 2: Form the JOSE Header 

[R42] The JWS JOSE header is a JSON object which MUST consist of minimally 

two fields, also called the claims, as specified below: 

Claim Description 

alg The algorithm that will be used for signing the JWS. 

[R43] The alg property MUST be taken from the list of valid JOSE algorithms can be found in 

IANA JOSE [5], section 3.1. 

In addition, this document recommends the following algorithms: 

[D10] ED25519, also as a JWK, with sha3-256 as the hashing algorithm 

SHOULD also be used as an algorithm for JWS signing 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 30 

 

Claim Description 

kid The “kid” (key ID) Header Parameter is a hint indicating which key was used to secure the 

JWS.  

[R44] The kid property MUST match the certificate id of the certificate selected in step 1. 

[D11] The receiver SHOULD use this value to identify the certificate to be used 

for verifying the JWS. 

Table 4 – Forming the JOSE Header 

8.3.3 Step 3: Form the payload to be signed 

The JSON payload to be signed must have the following claims: 

Claim Description 

iss The issuer of the JWS. 

[R45] The iss property MUST match the dn of the certificate selected in step 1. 

Table 5 – Signing the JSON Payload 

The payload to be signed is computed as: 

payload = base64Encode (JOSEHeader) + “.” + base64Encode(json) 

Where: 

• JOSEHeader: is the header created in Step 2 and 

• json: is the message for the original data to be sent 

8.3.4 Step 4: Sign and encode the payload 

The signed payload is computed as follows: 

signedAndEncodedPayload = base64Encode (encrypt(privateKey, payload)) 

Where: 

• privateKey: is the private key selected in step 1 

• payload: is the payload computed in Step 3 

• encrypt: Is an encryption function that implements the `alg` identified in Step 2. 

8.3.5 Step 5: Assemble the JWS 

The JWS is computed as follows: 

JWS = payload + “.” + signedAndEncodedPayload 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 31 

 

Where: 

• payload: is the payload computed in Step 3 

• signedAndEncodedPayload: is the signed element computed in Step 5. 

8.4 General Outline for creating a JWE 

The implementation guide is based on RFC 7516 [14]. 

JSON Web Encryption (JWE) represents encrypted content using JSON data structures and 

base64url encoding. These JSON data structures may contain whitespace and/or line breaks before 

or after any JSON values or structural characters, in accordance with Section 2 of RFC 7516 [14]. 

A JWE represents these logical values: 

• JOSE Header 

• JWE Encrypted Key 

• JWE Initialization Vector 

• JWE AAD (Additional Authenticated Data) 

• JWE Ciphertext 

• JWE Authentication Tag 

For a JWE, the JOSE Header members are the union of the members of these values: 

• JWE Protected Header 

• JWE Shared Unprotected Header 

• JWE Per-Recipient Unprotected Header 

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the plaintext 

and the integrity of the JWE Protected Header and the JWE AAD. 

This document recommends the following for the JWE Compact Serialization as a representation: 

[D12] JWE Shared Unprotected Header or JWE Per-Recipient Unprotected Header 

SHOULD not be used. 

In this case, the JOSE Header and the JWE Protected Header are the same. 

In this serialization, the JWE is represented as the following concatenation: 

BASE64URL(UTF8(JWE Protected Header)) || '.' || 

BASE64URL(JWE Encrypted Key) || '.' || 

BASE64URL(JWE Initialization Vector) || '.' || 

BASE64URL(JWE Ciphertext) || '.' || 

BASE64URL(JWE Authentication Tag) 

8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE 

[R46] As the JWS is used for non-repudiation, it MUST be signed using one of JWS 

issuer’s private keys. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 32 

 

[R47] The private key MUST have been used by the issuer to get a signing certificate 

issued from an identity provider. 

[R48] The signing certificate MUST be verifiably valid at the time of creating the 

JWE. 

8.4.2 Step 2: Form the JOSE Header of the JWE 

[R49] The JWE JOSE header is a JSON object which MUST consist of minimally 

four fields, also called the claims, as specified below: 

Claim Description 

alg The algorithm that will be used for signing the JWS. 

[R50] The alg property MUST be taken from the list of valid JOSE algorithms in 

RFC 7518 [15], section 3.1 

[R51] The NULL cipher MUST NOT be used as an alg value in JWTs. 

In addition, this document recommends the following algorithms: 

[D13] ED25519, also as a JWK, with sha3-256 as the hashing 

algorithm SHOULD be used. 

kid The "kid" (key ID) Header Parameter is a hint indicating which key was used to 

secure the JWS.  

[R52] The kid property MUST match the certificate id of the certificate selected 

in step 1. 

[D14] The receiver SHOULD use this value to identify the 

certificate to be used for verifying the JWS. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 33 

 

enc The “enc” (encryption algorithm) Header Parameter identifies the content 

encryption algorithm used to perform authenticated encryption on the plaintext to 

produce the ciphertext and the Authentication Tag. 

[R53] The selected encryption algorithm MUST be an AEAD algorithm with a 

specified key length. 

The encrypted content is not usable if the “enc” value does not represent a 

supported algorithm. 

[D15] “enc” values SHOULD either be registered in the IANA 

“JSON Web Signature and Encryption Algorithms” registry 

established by [ (IANA - JOSE, 2020)] or be a value that 

contains a Collision-Resistant Name. 

The “enc” value is a case-sensitive ASCII string containing a String Or URI 

value.   

[R54] The “enc” property MUST be present 

[R55] The “enc” property MUST be understood and processed by 

implementations. 

A list of defined "enc" values for this use can be found in the IANA registry 

established in IANA JOSE [5], with  the initial contents of this registry are the 

values defined in Section 5.1. 

accessjwk This parameter has the same meaning, syntax, and processing rules as the “jwk” 

Header Parameter defined in Section 7.1.3 of RFC 7516 [14], except that the key 

is the public key to which the JWE was encrypted with; this can be used to 

determine the private key needed to decrypt the JWE. 

Table 6 – Forming the JOSE Header of the JWE 

8.4.3 Step 3: Form the encryption key, initialization vector and AAD 

1. Determine the Key Management Mode employed by the algorithm used to determine the 

Content Encryption Key value (set in “alg”). 

2. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are 

employed, generate a random CEK value. See RFC 4086 [10] for considerations on 

generating random values. 

[R56] The CEK MUST have a length equal to that required for the content encryption 

algorithm. 

3. When Direct Key Agreement or Key Agreement with Key Wrapping are employed, use 

the key agreement algorithm to compute the value of the agreed upon key. When Direct 

Key Agreement is employed, let the CEK be the agreed upon key. When Key Agreement 

with Key Wrapping is employed, the agreed upon key will be used to wrap the CEK. 

4. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are 

employed, encrypt the CEK to the recipient and let the result be the JWE Encrypted Key. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 34 

 

5. When Direct Key Agreement or Direct Encryption are employed, let the JWE Encrypted 

Key be the empty octet sequence. 

6. When Direct Encryption is employed, let the CEK be the shared symmetric key. 

7. Compute the encoded key value BASE64URL(JWE Encrypted Key). 

8. Generate a random JWE Initialization Vector of the correct size for the content 

encryption algorithm (if required for the algorithm); otherwise, let the JWE Initialization 

Vector be the empty octet sequence. 

9. Compute the encoded Initialization Vector value BASE64URL(JWE Initialization 

Vector). 

10. Create the JSON object(s) containing the desired set of Header Parameters, which 

together comprise the JOSE Header: one or more of the JWE Protected Header. There are 

no unprotected headers in the JWE compact serialization representation.  

11. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE Protected 

Header)). 

12. Let the Additional Authenticated Data encryption parameter be ASCII(Encoded 

Protected Header). 

8.4.4 Step 4: Form the JWE Ciphertext and final JWE 

The JSON payload to be encrypted must have the following claims: 

Claim Description 

iss The issuer of the JWS. 

[R57] The iss property MUST match the dn of the certificate selected in step 1. 

Table 7 – The Issuer 

1. Encrypt the BASE64URL (JSON message) using the CEK, the JWE Initialization 

Vector, and the Additional Authenticated Data value using the specified content 

encryption algorithm to create the JWE Ciphertext value and the JWE Authentication Tag 

(which is the Authentication Tag output from the encryption operation). 

2. Compute the encoded ciphertext value BASE64URL(JWE Ciphertext). 

3. Compute the encoded Authentication Tag value BASE64URL(JWE Authentication Tag). 

4. If a JWE AAD value is present, compute the encoded AAD value BASE64URL(JWE 

AAD). 

5. Create the desired serialized output.  The Compact Serialization of this result is the string 

BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key) || 

'.' ||BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' || 

BASE64URL(JWE Authentication Tag). 

9 LSO API Payload Authenticity 

Up to this point we have only discussed security of the LSO API payload and LSO API response 

as described in the previous section. However, of equal importance is LSO API payload and LSO 

API response authenticity since the LSO API payload and LSO API response may be constructed 

by an entity other than Buyer or Seller. Therefore, this document only focuses on the authenticity 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 35 

 

of the LSO API payload and LSO API response since the authenticity of the Subject and Seller 

have already been established before an LSO API payload and LSO API response is authenticated. 

LSO API payload / response authenticity is a special case of Message Authenticity which is 

defined as the outcome of message authentication, which is defined in NIST SP 800-152 [24] as a 

process that provides assurance of the integrity of messages, documents, or stored data. The 

following requirements are focused on authenticity and privacy. 

[R58] Delegation of Trust MUST NOT be permitted if Buyer / Seller and their 

intended delegates are not in the same Trust Domain 

Delegation of Trust refers to the process whereby a Buyer / Seller imparts their inherent level of 

trust within their Trust Domain to another Buyer / Seller. 

Message Authenticity, and therefore, LSO API payload / response authenticity, in the context of 

this document specifies how a Message Payload needs to be structured such that it can be 

authenticated independent of the authentication of a Buyer or Seller.  

[D16] To ensure Message Authenticity for a request from the Buyer to the Seller, 

the semantics of a Message Payload SHOULD contain the elements of Table 

8 below. 

Element Example 

A previously established shared secret between 

Subject and Seller 

An alphanumeric string such as 

“ABC1234X7CV5” 

A new shared secret between Buyer and Seller An alphanumeric string such as 

“CBA1234X7CV5” 

A domain identifier for the next response from 

Seller to Buyer, if the Buyer’s domain identifier 

changes compared to the domain identifier of the 

Buyer’s request 

google.com 

An endpoint identifier for the next response from 

Seller to Buyer, if the Buyer’s domain identifier 

changes compared to the domain identifier of the 

Buyer’s request 

/quotemanagement/notification 

Table 8 – Message Payload Request Required Elements 

[D17] To ensure Message Authenticity for a response from the Seller to the Buyer, 

the semantics of a Message Payload SHOULD contain the elements of Table 

8 where the roles of Buyer and Seller are reversed.  

[D18] All Policies in a Buyer’s or Seller’s Trust Domain SHOULD enforce [D16] 

and [D17] 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 36 

 

10 Implementation Guide (Non-Normative) 

10.1 Overview 

This section provides an implementation perspective of the MEF LSO API Security Profile. For 

generality, this document will use an abstracted API model. Any application to a specific API is 

simply a swapping out of the relevant API data model.  

10.2 Specified Behavior 

The implementation of the abstracted API is based on the known configurations listed in the 

subsections below. 

10.2.1 Client Types 

As per the OAuth 2.0 specification [11], section 2.1, the Confidential Client Type is illustrated in 

the sample API as it can maintain its own credentials. 

10.2.2 Grant Types 

10.2.2.1 OIDC Hybrid Flow (response_type = code id_token) 

• The sample API illustrates the use of the request_type = code id_token for the OIDC 

Hybrid Flow implementation. 

The SP may optionally choose to return Refresh Tokens for the Hybrid Grant Flow when issuing 

an access token. 

10.2.2.2 Client Credentials Grant Type using multiple scopes (scope = specific functions) 

• The Client Credentials Grant Type (RFC 6749 [11], section 4.4) is only used when the 

TPP/SP requires an access token (on behalf of itself) to access an API resource e.g. 

o Quotes: 

POST /quote 

GET /quote-submissions/{QuoteSubmissionId} 

Figure 8 – Client Credential Type Using Multiple Scopes 

• In this example, an SP enables the same Confidential Client (ClientId) access to an API 

called Quote. A TPP/SP may, therefore, choose to request either a single scope or 

multiple scope(s) as the TPP/SP may want to use the same access token across multiple 

API e.g., Quote and Order. 

• Only valid API scopes will be accepted when generating an access token, for example 

POST /quote or GET/quote-submissions.  

• Access tokens generated by a Client Credentials grant may not return any refresh tokens 

(as per the OAuth 2.0 specification [11]). 

• Scopes are delimited by using a comma, for example POST /quote, GET /hub. 

https://tools.ietf.org/html/rfc6749#section-2.1
https://tools.ietf.org/html/rfc6749#section-4.4


 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 37 

 

10.2.3 Access Tokens 

• For one or more APIs, the access token must be obtained within a secure, server-side 

context between the TPP/SP and the SP.  

• Access Tokens must be validated by the TPP/SP as outlined within RFC 6749 [11]. 

10.2.4 Refresh Tokens 

• SPs may optionally return a refresh token [29] when an authorization request is 

successfully processed at the token endpoint. The Hybrid Grant Flow supports the 

provisioning of refresh tokens. 

• The sample API implementation below cites an example for SPs requesting a Refresh 

Token to refresh an expired access token prior to invoking the /quote resource. 

• Refresh Tokens must be validated as outlined in OpenID Registration [29].  

10.2.5 ID Tokens 

• ID Tokens must be validated by the TPP/SP as outlined in OpenID Registration [29]. 

• TPPs/SPs must use the meflso_intent_id claim to populate and retrieve the IntentID, e.g., 

QuoteID in our example, for any required validation. 

• The full set of claims that can be represented within an ID Token are documented in the 

Request Object and ID Token Section of the above MEF LSO API Security Profile. 

10.2.6 Authorization Codes 

• Authorization codes must be validated by the TPP/SP as outlined in RFC 6749 [11]. 

10.3 Non-Specified Behavior 

The current MEF LSO APIs are not specified for the following configurations: 

10.3.1 Client Types 

• As per the OAuth 2.0 specification [11], section 2.1, the Public Client Type has not been 

defined for MEF LSO APIs. 

10.3.2 Grant Types 

10.3.2.1 OIDC Hybrid Flow (response_type = code id_token token or response_type = code token) 

• Forces an access token to be returned from the SP authorization endpoint (instead of a 

token endpoint). 

10.3.2.2 OIDC Implicit Flow (response_type=id_token token or response_type=id_token) 

• The Implicit Flow does not authenticate the Client that is invoking the request. 

http://openid.net/specs/openid-connect-core-1_0.html#RefreshTokens
https://tools.ietf.org/html/rfc6749#section-2.1


 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 38 

 

10.3.2.3 Client Credentials Grant Type (scope=openid email profile address phone) 

• Requesting OIDC specific scopes or any non-specified scopes when using the Client 

Credentials grant. 

10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token) 

Each SP’s authorization / resource server will be configured independently to comply with internal 

SP security policies and guidelines. The LSO API specifications do not mandate validity lengths. 

10.3.3.1 Authorization Code 

• The OAuth 2.0 Specification [11] suggests an authorization code should be short lived to 

a maximum of 10 minutes. Any codes exceeding this limit are to be rejected. 

10.3.3.2 ID Token 

• ID Token claims (exp and iat) determine its validity. 

• Returned with the authorization code when the Hybrid Grant Flow (code id_token) is 

initiated. 

10.3.3.3 Access Token 

• The expires_in attribute returned by the authorization server when an access token is 

generated determines its validity. 

• Access tokens are generally short lived, and when they expire, are then exchanged for 

another using a longer-lived refresh token. 

• Refer to Section 16.18 of OpenID Connect Core [28], Lifetimes of Access Tokens and 

Refresh Tokens. 

10.3.3.4 Refresh Token 

• The expires_in attribute returned by the authorization server when a refresh token is 

generated determines its validity. 

• Refresh tokens are generally longer lived in comparison to access tokens. 

• Refer to Section 16.18 of OpenID Connect Core [28], Lifetimes of Access Tokens and 

Refresh Tokens. 

10.4 Success Flows 

In the sections below, the document outlines the success flow path of proper client application 

authentication and authorization using the sample API. 

10.4.1 Quote API Specification 

The sequence diagram below highlights the standard OAuth 2.0 Client Credentials Grant and 

OIDC Hybrid Grant flow with intent that are used by the sample API. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 39 

 

 

Figure 9 – Sample Quote API OAuth2/OIDC Authentication/Authorization Flow 

10.4.2 Client Credentials Grant Type (OAuth 2.0) 

10.4.2.1 Summary 

This grant type is used by the Buyer (through the TPP) in Step 2 to setup a single quote with the 

Seller (SP). 

1. The TPP initiates an authorization request using valid Client Credentials Grant (RFC 

6749 [11], section 4.4) type and scope(s). 

2. The SP authorization server validates the Client Authentication request from the TPP and 

generates an access token response when the request is valid. 

3. The TPP uses the access token to create a new Quote resource against the SP resource 

server. 

4. The SP resource server responds with the QuoteId for the resource it has created.  

5. The Client Credentials Grant may optionally be used by the TPP in Step 5 to retrieve the 

status of a Quote or Quote-Submission where no active access token is available. 

10.4.3 OIDC Hybrid Flow 

10.4.3.1 Summary 

• The Hybrid Grant flow [26] is the recommendation from the MEF LSO Security Profile 

and the FAPI Specification [31] for FAPI Read/Write. The Hybrid flow prevents IdP 

mix-up-attacks as documented in Mix-up Mitigation [7]. 

http://openid.net/specs/openid-connect-core-1_0.html#HybridFlowAuth


 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 40 

 

• This is initiated at the end of Step 2 by the TPP after the QuoteId is generated by the SP 

and returned to the TPP. 

• This is used in a redirect across the Buyer and Seller (SP) in Step 3 for the Buyer to 

authorize consent with the SP – for the TPP to proceed with the Quote. 

• This is used across the TPP and SP in Step 4 by exchanging the authorization code for an 

access token to create the Quote-Submission resource. 

10.4.4 HTTP Request and Response Examples 

10.4.4.1 Step 1 – Request Quote Initiation 

There are no requests and responses against the sample Quote API in this Step for the Buyer, TPP 

and Seller/SP. 

10.4.4.2 Step 2 – Setup Single Quote Initiation 

TPP obtains an access token using a Client Credentials Grant Type. The scope quote must be 

used. When an access token expires, the TPP will need to re-request for another access token 

using the same request below. 

Request: Client Credentials using private_key_jwt Response: Client 

Credentials 
POST  /as/token.oauth2 HTTP/1.1 

Host: https://authn.acme.com 

Content-Type: application/x-www-form-urlencoded 

Accept: application/json 

grant_type=client_credentials 

&scope=quote 

&client_assertion_type= 

    urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer 

&client_assertion=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRw 

czovL2p3dC1pZHAuZXhhbXBsZS5jb20iLCJzdWIiOiJtYWlsdG86bWlrZUBleGFtcGxlLmN 

vbSIsIm5iZiI6MTQ5OTE4MzYwMSwiZXhwIjoxNDk5MTg3MjAxLCJpYXQiOjE0OTkxODM2MD 

EsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiaHR0cHM6Ly9leGFtcGxlLmNvbS9yZWdpc3Rlc 

iJ9.SAxPMaJK_wYl_W2idTQASjiEZ4UoI7-P2SbmnHKr6LvP8ZJZX6JlnpK_xClJswAni1T 

p1UnHJslc08JrexctaeEIBrqwHG18iBcWKjhHK2Tv5m4nbTsSi1MFQOlMUTRFq3_LQiHqV2 

M8Hf1v9q9YaQqxDa4MK0asDUtE_zYMHz8kKDb-jj-Vh4mVDeM4_FPiffd2C5ckjkrZBNOK0 

01Xktm7xTqX6fk56KTrejeA4x6D_1ygJcGfjZCv6Knki7Jl-6MfwUKb9ZoZ9LiwHf5lLXPuy 

_QrOyM0pONWKj9K4Mj7I4GPGvzyVqpaZUgjcOaZY_rlu_p9tnSlE781dDLuw 

 

{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

  "iss": "s6BhdRkqt3", 

  "sub": "s6BhdRkqt3", 

  "exp": 1499187201, 

  "iat": 1499183601, 

  "jti": "id123456", 

  "aud": "https://authn.acme.com/as/token.oauth2" 

} 

. 

<<signature>> 

HTTP/1.1 200 Success 

Content-Length: 1103 

Content-Type: 

application/json 

Date: Mon, 26 Jun 2022 

15:18:28 GMT 

{ 

  "alg": "RS256", 

  "kid": "12347", 

  "typ": "JWT" 

} 

. 

{ 

    "access_token": 

"2YotnFZFEjr1zCsicMWpAA", 

    "expires_in": 3600, 

    "token_type": 

"bearer", 

    "scope":"quote" 

} 

. 

<<signature>> 

Table 9 – Non-Base64 JWT client_assertion 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 41 

 

Then the TPP uses the access token (with quote scope) from the SP to invoke the sample Quote 

API. 

Request: Quote API Response: Quote API 
POST /quote HTTP/1.1 

Authorization: Bearer 2YotnFZFEjr1zCsicMWpAA 

x-idempotency-key: FRESCO.21302.GFX.20 

x-fapi-mef-id: mef/2021/011 

x-fapi-buyer-last-logged-time: 2021-06-13T11:36:09 

x-fapi-buyer-ip-address: 104.25.212.99 

x-fapi-interaction-id: 93bac548-d2de-4546-b106-

880a5018460d 

Content-Type: application/json 

Accept: application/json 

 

 { 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

  "Data": {…} 

} 

. 

<<signature>> 

HTTP/1.1 201 Created 

Content-Type: application/json 

x-fapi-interaction-id: 93bac548-d2de-

4546-b106-880a5018460d 

  

{ 

  "alg": "RS256", 

  "kid": "12347", 

  "typ": "JWT" 

} 

. 

 

{ 

  "Data": {…} 

} 

. 

<<signature>> 

Table 10 – Single Quote Initiation 

10.4.4.3 Step 3 - Authorize Consent 

Then the TPP receives a QuoteId from the SP (Seller). The TPP then creates an authorization 

request (using a signed, and possibly encrypted, JWT request containing the QuoteId as a claim) 

for the Buyer/TPP to consent to the Quote directly with their Seller/SP. The request is an OIDC 

Hybrid Grant flow (requesting for code and id_token) 

Request: OIDC Hybrid Grant Flow Response: OIDC Hybrid 

Grant Flow 

Sourced from the MEF LSO Security Profile Request Object section 

GET /authorize? 

response_type=code id_token 

&client_id=s6BhdRkqt3 

&state=af0ifjsldkj 

&scope=openid quote 

&nonce=n-0S6_WzA2Mj 

&redirect_uri=https://api.mytpp.com/cb 

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsDuushgpwp0E.5leGFtcGxlI 

iwianRpIjoiM....JleHAiOjE0.olnx_YKAm2J1rbpOP8wGhi1BDNHJjVqsDuushgpwp0E 

 

{ 

    "alg": "", 

    "kid": "GxlIiwianVqsDuushgjE0OTUxOTk" 

} 

. 

{ 

   "iss": "https://api.acme.com", 

   "aud": "s6BhdRkqt3", 

   "response_type": "code id_token", 

After the Buyer has consented 

directly with the SP the SP 

validates the authorization 

request and generates an auth 

code and ID token 

HTTP/1.1 302 Found 

  Location: 

https://api.mytpp.com/cb# 

    

code=SplxlOBeZQQYbYS6WxSbIA 

    &id_token=eyJ0 ... 

NiJ9.eyJ1c ... 

I6IjIifX0.DeWt4Qu ... ZXso 

    &state=af0ifjsldkj 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 42 

 

Table 11 – Non-Base64-encoded Example of the Request Parameter Object 

Then, the Buyer is redirected to the TPP. The TPP will now possess the Authorization Code and 

ID Token from the SP (Seller). Note at this point, there is no access token. The TPP will now 

introspect the ID Token and use it as a detached signature to check: 

• The hash of the authorization code to prove it has not been tampered with during redirect 

(comparing the hash value against the c_hash attribute in ID Token) 

• The hash of the state to prove it has not been tampered with during redirect (comparing 

the state hash value against the s_hash attribute in the ID Token) 

Example: ID Token 
{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

.  

{ 

   "iss": "https://api.acme.com", 

   "iat": 1234569795, 

   "sub": "urn:acme:quote:58923", 

   "acr": "urn:meflso:ca", 

   "meflso_intent_id": "urn:acme:quote:58923", 

   "aud": "s6BhdRkqt3", 

   "nonce": "n-0S6_WzA2Mj", 

   "exp": 1311281970, 

   "s_hash": "76sa5dd", 

   "c_hash": "asd097d" 

  } 

. 

<<signature>> 

Table 12 – ID Token Example 

   "client_id": "s6BhdRkqt3", 

   "redirect_uri": "https://api.mytpp.com/cb", 

   "scope": "openid , POST /quote, GET /quote", 

   "state": "af0ifjsldkj", 

   "nonce": "n-0S6_WzA2Mj", 

   "max_age": 86400, 

   "claims": 

    { 

     "userinfo": 

      { 

       "meflso_intent_id": {"value": "urn:acme:intent:58923", 

"essential": true} 

      }, 

     "id_token": 

      { 

       "meflso_intent_id": {"value": "urn:acme:intent:58923", 

"essential": true}, 

       "acr": {"essential": true, 

                "values": ["urn:meflso:sca" 

                  ]}}} 

      } 

    } 

} 

. 

<<signature>> 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 43 

 

Once the state and code validations have been confirmed as successful, the TPP will proceed to 

obtain an access token from the SP/Seller using the authorization code it now possesses. The TPP 

will present its authorization code together with the private_key_jwt. The access token is required 

by the TPP to submit the Quote on behalf of the Buyer. The quote scope should already be 

associated with the authorization code generated in the previous step. 

Request: Access Token Request using Authorization Code and private_key_jwt Response: Access Token 
POST /as/token.oauth2 HTTP/1.1 

Host: https://authn.acme.com 

Content-Type: application/x-www-form-urlencoded 

Accept: application/json 

grant_type=authorization_code 

&code=SplxlOBeZQQYbYS6WxSbIA 

&redirect_uri=https://api.mytpp.com/cb 

&client_assertion_type= 

    urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer 

&client_assertion=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJodHRw 

czovL2p3dC1pZHAuZXhhbXBsZS5jb20iLCJzdWIiOiJtYWlsdG86bWlrZUBleGFtcGxlLmN 

vbSIsIm5iZiI6MTQ5OTE4MzYwMSwiZXhwIjoxNDk5MTg3MjAxLCJpYXQiOjE0OTkxODM2MD 

EsImp0aSI6ImlkMTIzNDU2IiwidHlwIjoiaHR0cHM6Ly9leGFtcGxlLmNvbS9yZWdpc3Rlc 

iJ9.SAxPMaJK_wYl_W2idTQASjiEZ4UoI7-P2SbmnHKr6LvP8ZJZX6JlnpK_xClJswAni1T 

p1UnHJslc08JrexctaeEIBrqwHG18iBcWKjhHK2Tv5m4nbTsSi1MFQOlMUTRFq3_LQiHqV2 

M8Hf1v9q9YaQqxDa4MK0asDUtE_zYMHz8kKDb-jj-Vh4mVDeM4_FPiffd2C5ckjkrZBNOK0 

01Xktm7xTqX6fk56KTrejeA4x6D_1ygJcGfjZCv6Knki7Jl-6MfwUKb9ZoZ9LiwHf5lLXPuy 

_QrOyM0pONWKj9K4Mj7I4GPGvzyVqpaZUgjcOaZY_rlu_p9tnSlE781dDLuw 

 

{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

  "iss": "s6BhdRkqt3", 

  "sub": "s6BhdRkqt3", 

  "exp": 1499187201, 

  "iat": 1499183601, 

  "jti": "id123456", 

  "aud": "https://authn.acme.com/as/token.oauth2" 

} 

. 

<<signature>> 

HTTP/1.1 200 OK 

Content-Type: 

application/json 

Cache-Control: no-store 

Pragma: no-cache 

 

{ 

 "access_token": 

"SlAV32hkKG", 

 "token_type": "Bearer", 

 "expires_in": 3600 

} 

Table 13 – Non-Base64 JWT Client Assertion 

10.4.4.4 Step 4 – Create Quote-Submission 

The TPP has an access token which can be used to create a Quote-Submission (Step 4). The TPP 

must obtain the QuoteId (Intent ID) so that the Quote request is associated with the correct 

QuoteId. This is sourced from the QuoteId claim from the signed ID Token (default). The TPP 

will need to decode the ID Token JWT and locate the claim attribute associated with the QuoteId. 

Once the previous step is completed, the TPP can now invoke the /quote-submissions API endpoint 

to commit the Quote using the access token and QuoteId in the payload of the request. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 44 

 

Request: quote-submissions Response: quote-submissions 
POST /quote-submissions HTTP/1.1 

Authorization: Bearer SlAV32hkKG 

x-idempotency-key: FRESNO.1317.GFX.22 

x-fapi mef-id: mef/2021/011 

x-fapi-buyer-last-logged-time: 2020-06-13T11:36:09 

x-fapi-buyer-ip-address: 104.25.212.99 

x-fapi-interaction-id: 93bac548-d2de-4546-b106-880a5018460de9699 

Content-Type: application/json 

Accept: application/json 

  

{ 

  "alg": "RS256", 

  "kid": "12345", 

  "typ": "JWT" 

} 

. 

{ 

  "Data": {…} 

} 

. 

<<signature>> 

HTTP/1.1 201 Created 

x-fapi-interaction-id: 93bac548-

d2de-4546-b106-880a5018460d 

Content-Type: application/json 

  

{ 

  "alg": "RS256", 

  "kid": "12347", 

  "typ": "JWT" 

} 

. 

{ 

  "Data": {…} 

} 

. 

<<signature>> 

Table 14 – Non-Base64 JWT Quote Submission 

10.4.4.5 Step 5 – Get Quote-Submission Status 

The TPP can query for the status of a Quote-Submission by invoking the /quote-submissions API 

endpoint using the known QuoteSubmissionId. This can use an existing access token with quote 

scope or the TPP/SP can obtain a fresh access token by replaying the client credentials grant 

request as per Step 2 – Setup Single Quote Initiation. 

Request: quote-submissions/{QuoteSubmissionId} Response: quote-submissions 

GET /quote-submissions/58923-001 HTTP/1.1 

Authorization: Bearer SlAV32hkKG 

x-fapi mef-id: mef/2021/011 

x-fapi-buyer-last-logged-time: 2020-06-13T11:36:09 

x-fapi-buyer-ip-address: 104.25.212.99 

x-fapi-interaction-id: 93bac548-d2de-4546-b106-

880a5018460d 

Accept: application/json 

HTTP/1.1 200 OK 

x-fapi-interaction-id: 93bac548-d2de-4546-

b106-880a5018460d 

Content-Type: application/json 

  

{ 

  "alg": "RS256", 

  "kid": "12347", 

  "typ": "JWT" 

} 

. 

{ 

  "Data": {…} 

} 

. 

<<signature>> 

Table 15 – Non-Base64 JWT Quote Submission Status 

Afterwards, a TPP can also optionally query for the status of a Quote resource by invoking 

/quote/{QuoteId} API endpoint. This can use an existing access token with quote scope or the 

TPP can obtain a fresh access token by replaying the client credentials grant request as per Step 2 

– Setup Single Quote Initiation. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 45 

 

10.5 Edge Cases (Non-Normative) 

This section provides further information on potential, common edge cases that may arise during 

the implementation of this standard. The document continues to use the Quote API example for 

specificity. However, the edge cases are general in nature, and not constrained to said API. 

10.5.1 Buyer Consent Authorization Interrupt with Seller 

API Scenario Workflow Step Impact Solution Options 

Any Due to an interruption, 

the Buyer does not 

complete the 

Authorization of the API 

request with the SP 

when redirected by the 

TPP (for Quote API 

after creating a QuoteId) 

Step 3: 

Authorize 

Consent 

Resource 

Status, in 

the 

example 

Quote, 

remains as 

Pending 

The TPP may choose to implement a separate 

follow up process which reminds the Buyer to 

complete their authorization consent steps 

with the SP. This would imply re-using the 

assigned unique resource ID, e.g., the 

QuoteId, that has a status and re-issuing 

another Hybrid Grant Flow request to the SP. 

The implementation of how the follow up 

process is initiated is in the competitive space 

for the TPPs/SPs to decide. 

Table 16 – Buyer Consent Authorization Interruption 

11 References 

[1] Auth0 JWKS, JSON Web Key Set (JWKS), June 2021 

[2] ECMA JSON, The JSON Data Interchange Syntax, 2nd Edition, December 2017 

[3] CNSSI 4009, Committee on National Security Systems Glossary, April 2015 

[4] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software 

Architectures, 2000 

[5] IANA JOSE, JSON Object Signing and Encryption (JOSE), November 2020 

[6] IETF, JSON Web Token Best Current Practices, June 2017 

[7] IETF, OAuth 2.0 Mix-up Mitigation, July 2016 

[8] IETF, OAuth 2.0 Software Statement, September 2013 

[9] IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, March 

1997 

[10] IETF RFC 4086, Randomness Requirements for Security, June 2005 

[11] IETF RFC 6749, The OAuth 2.0 Authorization Framework, October 2012 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 46 

 

[12] IETF RFC 6819, OAuth 2.0 Threat Model and Security Considerations, January 2013 

[13] IETF RFC 7515, JSON Web Signature (JWS), May 2015 

[14] IETF RFC 7516, JSON Web Encryption (JWE), May 2015 

[15] IETF RFC 7518, JSON Web Algorithms (JWA), March 2015 

[16] IETF RFC 7519, JSON Web Token (JWT), May 2015 

[17] IETF RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, May 

2017 

[18] IETF RFC 8485, Vectors of Trust, October 2018 

[19] IETF RFC 8725, JSON Web Token Best Current Practices, February 2020 

[20] MEF 10.4, Ethernet Service Attributes, Phase 4, December 2018 

[21] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and 

Framework, January 2021 

[22] MEF W116, LSO Cantata and LSO Sonata Product Inventory API – Developer Guide, 

In Development 

[23] MEF W118, Zero Trust Framework and Service Attributes, In Development 

[24] NIST SP 800-152, A Profile for U.S. Federal Cryptographic Key Management Systems, 

October 2015 

[25] Open Banking, Read/Write Data API Specification v3.1.2, May 2019 

[26] Open Banking, Security Profile Draft v1.1.2, February 2018 

[27] Open Banking, Read/Write API Profile v3.1.8, Undated 

[28] OpenID, OpenID Connect Core 1.0, November 2014 

[29] OpenID, OpenID Connect Registration 1.0, November 2014 

[30] OpenID, OpenID Connect Discovery 1.0, November 2014 

[31] OpenID, Financial-grade API Security Profile 1.0 – Part 1: Baseline, March 2021 

[32] W3C DIDs, Decentralized Identifiers (DIDs) v1.0, June 2021 

[33] W3C VCDM, Verifiable Credentials Data Model 1.0, November 2019 

  



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 47 

 

Appendix A Why Decentralized Public Key Infrastructure? (Informative) 

Currently 3rd parties such as Domain Name Services (DNS) registrars, the Internet Corporation 

for Assigned Names and Numbers (ICANN), X.509 Certificate Authorities (CAs), or social media 

companies are responsible for the creation and management of online identifiers and the secure 

communication between them. 

As evidenced over the last 20+ years, this design has demonstrated serious usability and security 

shortcomings. 

When DNS and X.509 Public Key Infrastructure (PKIX) as described in NIST publication SP 800-

32 was designed, the internet did not have a way to agree upon the state of a registry (or database) 

in a reliable manner with no trust assumptions. Consequently, standard bodies designated trusted 

3rd parties (TTPs) to manage identifiers and public keys. Today, virtually all Internet software 

relies on these authorities. These trusted 3rd parties, however, are central points of failure, where 

each could compromise the integrity and security of large portions of the Internet. Therefore, once 

a TTP has been compromised, the usability of the identifiers it manages is also compromised.  

As a result, companies spend significant resources fighting security breaches caused by CAs, and 

public internet communications that are both truly secure and user-friendly are still out of reach 

for most. 

Therefore, this standard suggests an identity approach where every identity is controlled by its 

Principal Owner and not by a 3rd party, unless the Principal Owner has delegated control to a 3rd 

party. A Principal Owner is defined as the entity controlling the public key(s) which control the 

identity and its identifiers upon inception of the identity. 

Identity in the context of this document is to mean the following: 

Identity = <Identifier(s)> + <associated data> 

where associated data refers to data describing the characteristics of the identity that is associated 

with the identifier(s). An example of such associated data could be an X.509 issues by a CA. 

Such an approach suggests a decentralized, or at least strongly federated, infrastructure. 

Decentralized in this context means that there is no single point of failure in the PKI where possibly 

no participants are known to one another. And strongly federated in this context means that there 

is a known, finite number of participants, without a single point of failure in the PKI. However, a 

collusion of a limited number of participants in the federated infrastructure may still lead to a 

compromised PKI. The consensus thresholds required for a change in the infrastructure needs to 

be defined by each identity federation. 

For a LSO APIs to properly operate, communication must be trusted and secure. Communications 

are secured through the safe delivery of public keys tied to identities. The Principal Owner of the 

identity uses a corresponding secret private key to both decrypt messages sent to them, and to 

prove they sent a message by signing it with its private key. 

PKI systems are responsible for the secure delivery of public keys. However, the commonly used 

X.509 PKI (PKIX) undermines both the creation and the secure delivery of these keys. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 48 

 

In PKIX services are secured through the creation of keys signed by CAs. However, the complexity 

of generating and managing keys and certificates in PKIX have caused companies to manage the 

creation and signing of these keys themselves, rather than leaving it to their clients. This creates 

major security concerns from the outset, as it results in the accumulation of private keys at a central 

point of failure, making it possible for anyone with access to that repository of keys to compromise 

the security of connections in a way that is virtually undetectable. 

The design of X.509 PKIX also permits any of the thousands of CAs to impersonate any website 

or web service. Therefore, entities cannot be certain that their communications are not being 

compromised by a fraudulent certificate allowing a PITM (Person-in-the-Middle) attack. While 

workarounds have been proposed, good ones do not exist yet. 

Decentralized Public Key Infrastructure (DPKI) has been proposed as a secure alternative. The 

goal of DPKI is to ensure that, unlike PKIX, no single third-party can compromise the integrity 

and security of a system employing DPKI as a whole. 

Within DPKI, a Principal Owner can be given direct control and ownership of a globally readable 

identifier by registering the identifier for example in a Distributed Ledger, often referred to as a 

Blockchain, or other system that guarantees data integrity without a central point of failure. 

Simultaneously, Distributed Ledgers allow for the assignment of arbitrary data such as public keys 

to these identifiers and permit those values to be globally readable in a secure manner that is not 

vulnerable to the PITM attacks that are possible in PKIX. This is done by linking an identifier’s 

lookup value to the latest and most correct public keys for that identifier. In this design, control 

over the identifier is returned to the Principal Owner. 

Therefore, it is no longer trivial for any one entity to undermine the security of the entire DKPI 

system or to compromise an identifier that is not theirs overcoming the challenges of typical PKI. 

Furthermore, DPKI requires a public registry of identifiers and their associated public keys that 

can be read by anyone but cannot be compromised. As long as this registration remains valid, and 

the Principal Owner is able to maintain control of their private key, no 3rd party can take ownership 

of that identifier without resorting to direct coercion of the Principal Owner. Any Principal Owner 

in a DPKI system must be able to broadcast a message if it is well-formed within the context of 

the DPKI. Other peers in the system do not require admission control. This implies a decentralized 

consensus mechanism naturally leading to the utilization of systems such as distributed ledgers. 

Therefore, given two or more histories of updates, any Principal Owner must be able to determine 

which one is preferred due to security by inspection. This implies the existence of a method of 

ascertaining the level of resources backing a DPKI history such as the hash power in the Bitcoin 

blockchain based on difficulty level and nonce. 

Requirements of identifier registration in DPKI is handled differently from DNS. Although 

registrars may exist in DPKI, these registrars must adhere to several requirements that ensure that 

identities belong to the entities they represent. This is achieved the following way: 

• Private keys must be generated in a manner that ensures they remain under the Principal 

Owner’s control. 

• Generating key pairs on behalf of Principal Owner must not be allowed. 



 MEF W128 Draft (R1)  

MEF W128 

Draft (R1) 

© MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the 

following statement: "Reproduced with permission of MEF Forum." No user of this document is 
authorized to modify any of the information contained herein. 

Page 49 

 

• Principals Owners must always be in control of their identifiers and the corresponding 

public keys. However, Principal Owners may extend control of their identifier to third 

parties, if they prefer, for example for public key recovery purposes. 

• Extension of control of identifiers to 3rd parties must be an explicit, informed decision by 

the Principal Owner of such identifier. 

• Private keys must be stored and/or transmitted in a secure manner. 

• No mechanism should exist that would allow a single entity to deprive a Principal Owner 

of their identifier without their consent. This implies that: 

o Once a namespace for an identity is created it must not be possible to destroy it. 

o Namespaces in a DPKI must not contain blacklisting mechanisms that would allow 

anyone to invalidate identifiers that do not belong to them. 

o Once set, namespace rules within a DPKI must not be altered to introduce any new 

restrictions for renewing or updating identifiers. Otherwise, it would be possible to 

take control of identifiers away from Principals Owners without their consent. 

• The rules for registering and renewing identifiers in a DPKI must be transparent and 

expressed in simple terms. 

Note that if registration is used as security to an expiration or other policy, the Principal Owner 

must be explicitly and timely warned that failure to renew the registration on time could result in 

the Principal Owner losing control of the identifier. 

• Also,  within a DPKI, processes for renewing or updating identifiers must not be modified 

to introduce new restrictions for updating or renewing an identifier, once issued. 

• Finally, within a DPKI all network communications for creating, updating, renewing, or 

deleting identifiers must be sent via a non-centralized mechanism. This is necessary to 

ensure that a single entity cannot prevent identifiers from being updated or renewed. 

While the above might not yet be common practice, DPKI mitigates the PKIX threat model, and 

is either already in use as with the state government of British Columbia in Canada, or under active 

development and regulatory consideration as within EU countries such as Germany to meet the 

EU’s General Data Privacy Regulation directive or with the Department of Homeland Security in 

the US. 


	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Release Notes
	5 Compliance Levels
	6 Introduction
	7 MEF LSO Security Architecture
	7.1 MEF LSO API Security Architecture Prerequisites
	7.2 Supported Authentication Frameworks and their Threat Models
	7.3 Consuming Service Provider (SP)-owned Resources from another SP
	7.4 Hybrid Flow Request with Intent Id
	7.5 Hybrid Grant Flow Parameters
	7.5.1 Minimum Conformance Requirements
	7.5.1.1 Overview
	7.5.1.2 Example for minimum conformance hybrid grant flow profiles
	7.5.1.2.1 HTTP Request Example
	7.5.1.2.2 Request JWS/JWE
	7.5.1.2.3 id_token returned
	7.5.1.2.4 id_token returned




	8 JWT Security Suite Information v1.0
	8.1 General Guidance for JWT Best Practice
	8.2 JWKS Endpoints
	8.3 General outline for creating a JWS
	8.3.1 Step 1: Select the certificate and private key that will be used for signing the JWS
	8.3.2 Step 2: Form the JOSE Header
	8.3.3 Step 3: Form the payload to be signed
	8.3.4 Step 4: Sign and encode the payload
	8.3.5 Step 5: Assemble the JWS

	8.4 General Outline for creating a JWE
	8.4.1 Step 1: Select the certificate and private key that will be used for signing the JWE
	8.4.2 Step 2: Form the JOSE Header of the JWE
	8.4.3 Step 3: Form the encryption key, initialization vector and AAD
	8.4.4 Step 4: Form the JWE Ciphertext and final JWE


	9 LSO API Payload Authenticity
	10 Implementation Guide (Non-Normative)
	10.1 Overview
	10.2 Specified Behavior
	10.2.1 Client Types
	10.2.2 Grant Types
	10.2.2.1 OIDC Hybrid Flow (response_type = code id_token)
	10.2.2.2 Client Credentials Grant Type using multiple scopes (scope = specific functions)

	10.2.3 Access Tokens
	10.2.4 Refresh Tokens
	10.2.5 ID Tokens
	10.2.6 Authorization Codes

	10.3 Non-Specified Behavior
	10.3.1 Client Types
	10.3.2 Grant Types
	10.3.2.1 OIDC Hybrid Flow (response_type = code id_token token or response_type = code token)
	10.3.2.2 OIDC Implicit Flow (response_type=id_token token or response_type=id_token)
	10.3.2.3 Client Credentials Grant Type (scope=openid email profile address phone)

	10.3.3 Validity Lengths (Authorization Code, Access Token, ID Token, Refresh Token)
	10.3.3.1 Authorization Code
	10.3.3.2 ID Token
	10.3.3.3 Access Token
	10.3.3.4 Refresh Token


	10.4 Success Flows
	10.4.1 Quote API Specification
	10.4.2 Client Credentials Grant Type (OAuth 2.0)
	10.4.2.1 Summary

	10.4.3 OIDC Hybrid Flow
	10.4.3.1 Summary

	10.4.4 HTTP Request and Response Examples
	10.4.4.1 Step 1 – Request Quote Initiation
	10.4.4.2 Step 2 – Setup Single Quote Initiation
	10.4.4.3 Step 3 - Authorize Consent
	10.4.4.4 Step 4 – Create Quote-Submission
	10.4.4.5 Step 5 – Get Quote-Submission Status


	10.5 Edge Cases (Non-Normative)
	10.5.1 Buyer Consent Authorization Interrupt with Seller


	11 References
	Appendix A Why Decentralized Public Key Infrastructure? (Informative)

