N =
MEF

Letter Ballot
MEF W124

LSO Cantata and LSO Sonata Trouble Ticket
and Incident Management API - Developer
Guide

October 2022

EXPORT CONTROL: This document contains technical data. The download, export,
re-export or disclosure of the technical data contained in this document may be
restricted by applicable U.S. or foreign export laws, regulations and rules and/or
applicable U.S. or foreign sanctions (" Export Control Laws or Sanctions"). You agree
that you are solely responsible for determining whether any Export Control Laws or
Sanctions may apply to your download, export, reexport or disclosure of this
document, and for obtaining (if available) any required U.S. or foreign export or

reexport licenses and/or other required authorizations.

1/86

Disclaimer
© MEF Forum 2022. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any
recipient and is believed to be accurate as of its publication date. Such information is subject
to change without notice and MEF Forum (MEF) is not responsible for any errors. MEF
does not assume responsibility to update or correct any information in this publication. No
representation or warranty, expressed or implied, is made by MEF concerning the
completeness, accuracy, or applicability of any information contained herein and no liability

of any kind shall be assumed by MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the
recipient or user of this document. MEF is not responsible or liable for any modifications to

this document made by any other party.

The receipt or any use of this document or its contents does not in any way create, by

implication or otherwise:

* (a) any express or implied license or right to or under any patent, copyright, trademark
or trade secret rights held or claimed by any MEF member which are or may be

associated with the ideas, techniques, concepts or expressions contained herein; nor

¢ (b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or

concepts contained herein; nor

¢ (c) any form of relationship between any MEF member and the recipient or user of this

document.

Implementation or use of specific MEF standards, specifications or recommendations will
be voluntary, and no Member shall be obliged to implement them by virtue of participation
in MEF Forum. MEF is a non-profit international organization to enable the development
and worldwide adoption of agile, assured and orchestrated network services. MEF does not,

expressly or otherwise, endorse or promote any specific products or services.
Copyright

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall
contain the following statement: "Reproduced with permission of MEF Forum." No user of

this document is authorized to modify any of the information contained herein.

2/86

Table of Contents

 List of Contributing Members
1. Abstract

2. Terminology and Abbreviations

3. Compliance Levels

4. Introduction
o 4.1. Conventions in the Document
o 4.2. Relation to Other Documents
o 4.3. Approach
o 4.4. High-Level Flow

5. API Description

o 5.1. High-level use cases

o 5.2. API Endpoint and Operation Description
» 5.2.1. Seller side API Endpoints
= 5.2.2. Buyer side API Endpoints
o 5.3. Specifying the Buyer ID and the Seller ID
o 5.4. Model Structural Validation
o 5.5. Security Considerations
e 6. API Interactions and Flows
o 6.1. Use case 1: Create Ticket
» 6.1.1. Interaction flow
» 6.1.2. Create Trouble Ticket - Request
» 6.1.3. Create Trouble Ticket - Response
» 6.1.4. Trouble Ticket - Lifecycle
6.2. Use Case 2: Retrieve Ticket List
6.3. Use Case 3: Retrieve Ticket by Ticket Identifier
6.4. Use Case 4: Patch Ticket by Ticket Identifier
6.5. Use case 5: Cancel Ticket by Ticket Identifier
6.6 Use Case 6: Ticket Resolution Confirmation
6.7. Use Case 15: Retrieve Incident List
6.8. Use Case 16: Retrieve Incident by Incident Identifier

o

o

o

[}

[}

o

[}

o 6.9. Use case 17: Register for Event Notifications
o 6.10. Use case 18: Send Event Notification
e 7. API Details
o 7.1. API patterns
» 7.1.1. Indicating errors
» 7.1.2. Response pagination
o 7.2. Management API Data model
s 7.2.1. TroubleTicket
» 7.2.2. Incident

s 7.2.3. Common

3/86

» 7.2.4. Notification registration
o 7.3. Notification API Data model

= 7.3.1. Type Event
7.3.2. Type TroubleTicketEvent
7.3.3. enumn TroubleTicketEventType
7.3.4. Type TroubleTicketEventPayload
7.3.5. Type IncidentEvent

7.3.6. Type IncidentEventPayload

7.3.7. enum IncidentEventType
¢ 8. References

e Appendix A Acknowledgments

4 /86

List of Contributing Members

The following members of the MEF participated in the development of this document and

have requested to be included in this list.

Member

Amartus

Lumen Technologies

NEC/Netcracker

Proximus

Spirent Communications

Table 1. Contributing Members

1. Abstract

This standard is intended to assist implementation of the Trouble Ticketing functionality
defined for the LSO Cantata and LSO Sonata Interface Reference Points (IRPs), for which
requirements and use cases are defined in MEF 113 Trouble Ticketing Requirements and
Use Cases [MEF113]. This standard consists of this document and complementary API

definitions for Trouble Ticket Management and Trouble Ticket Notification.

This standard normatively incorporates the following files by reference as if they were part

of this document, from the GitHub repository
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK

commit id: 2a2e4b984345415a8e1a3b4136d379e4b19{78e6

® productApi/troubleTicket/troubleTicketManagement.api.yaml

® productApi/troubleTicket/troubleTicketNotification.api.yaml

https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK

commit id: 41349d14d557¢76b749165adcbaleb290f94c4cc

® productApi/troubleTicket/troubleTicketManagement.api.yaml

® productApi/troubleTicket/troubleTicketNotification.api.yaml

The Trouble Ticket API is defined using OpenAPI 3.0 [OAS-V3]

5/86

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/tree/2a2e4b984345415a8e1a3b4f36d379e4b19f78e6
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/2a2e4b984345415a8e1a3b4f36d379e4b19f78e6/productApi/troubleTicket/troubleTicketManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/2a2e4b984345415a8e1a3b4f36d379e4b19f78e6/productApi/troubleTicket/troubleTicketNotification.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/tree/41349d14d557e76b749165adcba0eb290f94c4cc
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/blob/41349d14d557e76b749165adcba0eb290f94c4cc/productApi/troubleTicket/troubleTicketManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/blob/41349d14d557e76b749165adcba0eb290f94c4cc/productApi/troubleTicket/troubleTicketNotification.api.yaml

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions of terms are found in other documents. In these cases, the third column is used to

provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the standards referenced below are included in this document

by reference and are not repeated in the table below:

e MEF 55.1

e MEF 79

* MEF 80

e MEF 113

Term Description Reference
In the context of LSO, API describes one of the Management
L Interface Reference Points based on the requirements specified

Application

in an Interface Profile, along with a data model, the protocol
Program . . [MEF55.1]
Interf: that defines operations on the data and the encoding format
nterface
used to encode data according to the data model. In this

document, API is used synonymously with REST API

This

In the context of this document, denotes the organization or
o) . , document;
individual acting as the customer in a transaction over a
Buyer , . i adapted
Cantata (Customer <-> Service Provider) or Sonata (Service "
rom

Provider <-> Partner) Interface
[MEF80]

An entry within a Seller's tracking system created by the
context of this document, denotes a situation that is not part of
. normal operationSeller, which contains information about a
Incident L i) [MEF113]
Situation in the Seller's network that has a possible negative
impact on the operability of the network ona Product for one

or more Buyers

In the context of this document, denotes a problem with a
Issue Product as experienced by the Buyer that is not part of normal [MEF113]

operation.

A message sent from the Seller to the Buyer to inform about
Notification an event that has occurred in regard to a specific instance ofa [MEF113]

Ticket or an Incident

Requesting The business organization that is acting on behalf of one or [MEF79]
Entity more Buyers. In the most common case, the Requesting Entity
6/86

represents only one Buyer and these terms are then

synonymous

The business organization that is acting on behalf of one or

Responding more Sellers. In the most common case, the Responding Entity 'MEF79]
Entity represents only one Seller and these terms are then
synonymous
Representational State Transfer. REST provides a set of
architectural constraints that, when applied as a whole,
emphasizes scalability of component interactions, generality of
REST API . . [REST]
interfaces, independent deployment of components, and
intermediary components to reduce interaction latency, enforce
security, and encapsulate legacy systems.
) o This
In the context of this document, denotes the organization
) .) document;
acting as the supplier in a transaction over a Cantata
Seller] ,]) adapted
(Customer <-> Service Provider) or Sonata (Service Provider "
rom
<-> Partner) Interface
[MEF80]
o In the context of this document, denotes a problem that is not
Situation L [MEF113]
part of normal operation in the Seller's network
An entry within a Seller's tracking system created by the
Buyer (or a third party on behalf of the Buyer), which contains
Ticket information about an Issue impacting normal operation of a [MEF113]
Product, along with support interventions made by technical
support staff, or third parties
Trouble In the context of this document, denotes the management of [MEF113]
Ticketing both Tickets and Incidents
In the context of this document, denotes a set of tasks to be
Work Order scheduled and performed under the responsibility of a [MEF113]

Technician at a given location

Table 2. Terminology

Term Description Reference
API Application Program Interface [MEFS55.1]
REST API Representational State Transfer API [REST]

Table 3. Abbreviations

3. Compliance Levels

7186

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC2119], RFC 8174 [RFC8174]) when, and only when, they appear in all

capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that
MUST be followed if the condition(s) following the "<" have been met. For example, "
[CR1]<[D38]" indicates that Conditional Mandatory Requirement 1 must be followed if
Desirable Requirement 38 has been met. A paragraph preceded by [CDb]< specifies a
Conditional Desirable Requirement that SHOULD be followed if the condition(s) following
the "<" have been met. A paragraph preceded by **[COc]<**specifies a Conditional
Optional Requirement that MAY be followed if the condition(s) following the "<" have

been met.

8/86

4. Introduction

The Trouble Ticket API allows the Buyer to create, retrieve, and update Trouble Tickets as
well as receive notifications and Trouble Tickets' updates. This allows managing issues and

situations that are not part of normal operations of the Product provided by the Seller.

This standard specification document describes the Application Programming Interface
(AP]) for Trouble Ticketing functionality of the LSO Cantata Interface Reference Point
(IRP) and LSO Sonata IRP as defined in the MEF 55.1 Lifecycle Service Orchestration
(LSO): Reference Architecture and Framework [MEF55.1]. The LSO Reference
Architecture is shown in Figure 1 with both IRPs highlighted.

Customer Domain SP Domain Partner Domain

Business Applications Business Applications
SONATA

CANTATA et

(CUS:BUS) LEGATO (BUS:SOF)

Customer Application

. LEGATO (BUS:SOF
Coordinator ()

Service Orchestration Functionality Service Orchestration Functionality
INTERLUDE

ALLE_GRO PRESTO (SOF:SOF) PRESTO |PRESTO
. o (CUS:SOF) (SOF:ICM) §*"»===*==" i (SOF:ICcM) {SOFINFVO)
BUS: Business Applications
. S . Infrastructure Infrastructure
CUS:: Customer Application Coordinator H
ECM- EI c | and M Control and H Control and
: Element Control and Management Management Management

ICM: Infrastructure Control and Management
NFV-MANO: Network Function Virtualization

H Or-Vnfm Or-Vnfm -
1
>
(MANO) (ICM:ECM) . NFV-
NFVO: NFV Orchestrator

(NFV)-Management and Orchestration

Or-Vnfm: Reference point between NFVO i Vivnfm [Ve-Vnfm-em Vi-Vnfm | Ve-Vnfm-em MANO
and VNFM i

SOF: Service Orchestration Functionality Element Control \ﬁn;::];r;f;;s;r:tclgre Element Control Wlt‘llj::\:g;?sg::tcgre
Ve-Vnfm-em: Reference point between and Management Element Management and Management e

Element Manager (EM) and VNF Manager
Vi-Vnfm: Reference point between
Virtualized Infrastructure Manager (VIM) and
VNFM Infrastructure (Network, Compute, Storage)
VNFM: Virtual Network Functions (VNF)

Manager

Figure 1. The LSO Reference Architecture

Cantata and Sonata IRPs define pre-ordering and ordering functionalities that allow an
automated exchange of information between business applications of the Buyer (Customer

or Service Provider) and Seller (Service Provider or Partner) Domains. Those are:

e Product Catalog

e Address Validation

« Site Retrieval

¢ Product Offering Qualification
¢ Product Quote

e Product Inventory

* Product Ordering

* Trouble Ticketing

* Billing

The business requirements and use cases for Trouble Ticketing are defined in MEF W113
Trouble Ticketing Requirements and Use Cases [MEF113]. MEF W113 defines use cases

9/86

that cover Trouble Ticket, Incident, Appointment, and WorkOrder. The scope of this API
and Developer Guide covers the Trouble Ticket and Incident related use cases (based on the
[TMF621] Trouble Ticket API). The Appointment and Work order use cases are covered by
LSO Cantata and LSO Sonata Appointment API Developer Guide [MEF137].

This document is structured as follows:

e Chapter 4 provides an introduction to Trouble Ticketing and its description in a broader
context of Cantata and Sonata and their corresponding SDKs.

e Chapter 5 gives an overview of endpoints, resource model and design patterns.

e Use cases and flows are presented in Chapter 6.

¢ And finally, Chapter 7 complements previous sections with a detailed API description.

4.1. Conventions in the Document

e Code samples are formatted using code blocks. When notation << some text »> 1s used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.

e Model definitions are formatted as in-line code (e.g. troubleticket).

e In UML diagrams the default cardinality of associations is ¢..1. Other cardinality
markers are compliant with the UML standard.

* In the API details tables and UML diagrams required attributes are marked with a - next
to their names.

¢ In UML sequence diagrams ({variabie}} notation is used to indicate a variable to be

substituted with a correct value.

4.2. Relation to Other Documents

This API implements the Trouble Ticket related requirements and use cases that are defined
in MEF 113 [MEF113]. The API definition builds on TMF621 Trouble Ticket API REST
Specification R19.0.1 [TMF621].

4.3. Approach

As presented in Figure 2. both Cantata and Sonata API frameworks consist of three

structural components:

e Generic API framework
¢ Product-independent information (Function-specific information and Function-specific
operations)

¢ Product-specific information (MEF product specification data model)

10/ 86

Wire/transport Protocol
Generic API Encoding Scheme | es REST/OpenAPI
Framework
Security Mechanisms
Notification Mechanisms
Product-Independent Function-specific Information ‘ e.g. Quote Management and Notifications
Information !

Function-specific Operations
7 MEF Services, e.g.:

* CEServices (EP-LINE, EVP-LINE,
Access-ELINE, Transit-ELINE,...),

* SD-WAN Services
* |PServices

Product-specific
Information, based on: Data Model
MEF Service Model
MEF Business Model

+ Optical Transport Services

Figure 2. Cantata and Sonata API framework

The essential concept behind the framework is to decouple the common structure,
information and operations from the specific product information content.

Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Cantata or Sonata APIs.

Secondly, the product-independent information of the framework focuses on a model of a
particular Cantata or Sonata functionality and is agnostic to any of the product
specifications.

Finally, the product-specific information part of the framework focuses on MEF product
specifications that define business-relevant attributes and requirements for trading MEF

subscriber and MEF operator services.

The Trouble Ticket is product-agnostic in its nature and is not intended to carry any product-
specific payloads. It only references products from the inventory by iq. It operates using the

Generic API Framework and the Function-specific Information and Operations.

4.4. High-Level Flow

Trouble Ticket is part of a broader Cantata and Sonata End-to-End flow. Figure 3. below
shows a high-level diagram to get a good understanding of the whole process and Trouble

Ticket's position within it.

11/86

Buyer

Trouble Ticketing

Seller

Figure 3. Cantata and Sonata End-to-End Function Flow

e Address Validation:
o Allows the Buyer to retrieve address information from the Seller, including exact

formats, for addresses known to the Seller.

Site Retrieval:
o Allows the Buyer to retrieve Geographic Site information including exact formats
for Geographic Sites known to the Seller.
Product Offering Qualification (POQ):
o Allows the Buyer to check whether the Seller can deliver a product or set of

products from among their product offerings at the geographic address or a
Geographic Site specified by the Buyer; or modify a previously purchased product.
Quote:
o Allows the Buyer to submit a request to find out how much the installation of an

instance of a Product Offering, an update to an existing Product, or a disconnect of
an existing Product will cost.
Product Order:

o Allows the Buyer to request the Seller to initiate and complete the fulfillment

process of an installation of a Product Offering, an update to an existing Product, or

a disconnect of an existing Product at the address defined by the Buyer.

Product Inventory:
o Allows the Buyer to retrieve the information about the existing Product instances

from Seller's Product Inventory.

Trouble Ticketing:
o Allows the Buyer to create, retrieve, and update Trouble Tickets as well as receive
notifications about Incidents' and Trouble Tickets' updates. This allows managing

issues and situations for a Product provided by the Seller.

12/86

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it gives

an overview of the API resource model.

5.1. High-level use cases

Figure 4 presents a high-level use case diagram as specified in MEF 113 [MEF113] in
section 7. This picture aims to help understand the endpoint mapping. Use cases are

described extensively in chapter 6.

Note: As stated earlier, the scope of this API does not cover the Appointment and
WorkOrder related use cases. The diagram below lists all use cases defined in MEF 113 to
highlight which of them are covered. For easier requirements matching this document keeps
the original MEF 113 numbering. The remaining use cases are covered by LSO Cantata and
LSO Sonata Appointment API Developer Guide [MEF137].

13/86

Bu

er

———————— I\

1. Create Ticket
2. Retrieve Ticket List

3. Retrieve Ticket by Ticket |dentifier

4. Patch Ticket by Ticket Identifier

5. Cancel Ticket by Ticket [dentifier

6. Ticket Resolution Confirmation

«not in scopes

7. Search Appointment Timeslot

«not in scopes
Create Appointment

8.

«not in scopes
9. Retrieve Appointment List

«not in scopes
10 Retrieve Appointment by Appointment Identifier

«not in scopes
11. Patch Appointment by Appointment |dentifier

«not in scopes
12. Cancel Appointment by Appointment |dentifier

«not in scopes
13. Retrieve Waorlorder List

« not in scopes
14. Retrieve Warkarder by Warkorder Identifier

15. Retrieve Incident List

16. Retrieve Incident by Incident Identifier

17. Register for Event Notifications

14/ 86

S —
|\

[\ 18. Send Event Motification)
| '\\
«not in scopes
19. Register for Appointment Motifications
«not in scopes
20. Send Appointment Notification
«not in scopes
21. Register for Warkarder Notifications
«not in scopes //
22. Send Workorder Maotification

|
o

Figure 4. Use cases

5.2. API Endpoint and Operation Description

5.2.1. Seller side API Endpoints

Base URL for Cantata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}/mefApi/cantata/troubleTicket/v4/
Base URL for Sonata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}}/mefApi/sonata/troubleTicket/v4/

The following API endpoints are implemented by the Seller and allow the Buyer to create,

retrieve, modify Trouble Tickets and register for Notifications. The endpoints and
corresponding data model are defined in

productApi/troubleTicket/troubleTicketManagement.api.yaml.

MEF 113
API endpoint Description Use Case
mapping
A request initiated by the Buyer to create a Ticket
POST /troubleTicket in the Seller's system to report an Issue U_C I Create
experienced by the Buyer or their end user. Ticket
The Buyer requests a list of Tickets from the ucC 2:
GET /troubleTicket Seller based on a set of specified filter criteria. Retrieve
The Seller returns a summarized list of Tickets. Ticket List

15/86

MEF 113

API endpoint Description Use Case
mapping
ucC 3:
o] Retrieve
The Buyer requests detailed information about a .
GET /troubleTicket/{{id}} Ticket by
single Ticket based on a Ticket Identifier. i
Ticket
Identifier
UC 4: Patch
A request by the Buyer to patch/partial up-date a Ticket by
PATCH /troubleTicket/{{id}} . . .
Ticket created by the Buyer in the Seller's system. Ticket
Identifier
ucCs:
. Cancel
POST A request by the Buyer to cancel a Ticket created .
. Ticket by
/troubleTicket/{{id}}/cancel DY the Buyer in the Seller's system.)
Ticket
Identifier
A request from the Buyer confirming whether
they agree that a Ticket created by the Buyer in
the Seller's system can be closed, since the UC 6: Ticket
POST
reported Issue is no longer observed. This request Resolution
/troubleTicket/{{id}}/close
is the action taken by a Buyer after receiving an Confirmation
Event Notification from the Seller with
Notification Event Type TroubleTicketResolvedEvent.
A request from the Buyer rejecting that a Ticket
created by the Buyer in the Seller's system can be
closed, because the reported Issue is still UC 6: Ticket
POST
observed. This request is the action taken by a Resolution
/troubleTicket/{{id}}/reopen L. . . .
Buyer after receiving a Event Notification from Confirmation
the Seller with Notification Event Type
TroubleTicketResolvedEvent.
UC 17:
]]) Register for
POST /hub The Buyer requests to subscribe to notifications.
Event
Notifications
UC17:
A request initiated by the Buyer to retrieve the Register for
GET /hub/{{id}}) . . .
details of the notification subscription. Event
Notifications

16/ 86

MEF 113

API endpoint Description Use Case
mapping
UC 17:
A request initiated by the Buyer to instruct the Register for
DELETE /hub/{{id}} . .
Seller to stop sending notifications. Event
Notifications

Table 4. Seller side mandatory API endpoints

[R1] The implementation MUST support API endpoints listed in Table 4. [MEF113 R1],
[MEF113 R2]

API L. MEF 113 Use
. Description .
endpoint Case mapping

The Buyer requests a list of Incidents from the Seller .
UC 15. Retrieve

GET /incident based on a set of specified filter criteria. The Seller))
Incident List

returns a summarized list of Incidents.

UC 16. Retrieve

GET The Buyer requests detailed information about a single Incident by
/incident/{{id}} Incident based on an Incident Identifier. Incident
Identifier

Table 5. Seller side optional API endpoints
[O1] The implementation MAY support API endpoints listed in Table 5. [MEF113 O1]

[CR1]<(]O1]) If any of endpoints listed in Table 5 is supported, then all endpoints listed in
Table 5 MUST be supported. [MEF113 [CR1]<[O1]]

5.2.2. Buyer side API Endpoints

Base URL for Cantata: nttps://{{serverBase}}: {{port}}

{{?/buyer_prefix}}/mefApi/cantata/troubleTicketNotification/v4/

Base URL for Sonata: https://{{serverBase}}:{{port}}

{{?/buyer_prefix}}/mefApi/sonata/troubleTicketNotification/v4/

The following API Endpoints are used by the Seller to post notifications to registered

listeners. The endpoints and corresponding data model are defined in

productApi/troubleTicket/troubleTicketNotification.api.yaml

17186

MEF 113

API Endpoint Description Use Case
Mapping
A request initiated by the Sellerto UC 18:
POST
notify the Buyer on rtroubieticket Send Event
/listener/troubleTicketAttributeValueChangeEvent . . .
attribute value change. Notification
A request initiated by the Sellerto UC 18:
POST /listener/troubleTicketStatusChangeEvent notify the Buyer on Send Event
TroubleTicket.status Change. Notification
A request initiated by the Seller to UC 18:
POST /listener/troubleTicketResolvedEvent notlfy the Buyer ON TroubleTicket Send Event
reaching the resoived status. Notification
A request initiated by the Seller to UC 18
PoST notify the Buyer that and additional '
. .. . Send Event
/listener/troubleTicketInformationRequiredEvent information is requlred for further . .
Notification

Ticket processing

Table 6. Buyer side mandatory API endpoints

[R2] The implementation MUST support API endpoints listed in Table 6. [MEF113 R2]

MEF 113
API Endpoint Description Use Case
Mapping
o UC 18: Send
A request initiated by the Seller to
POST /listener/incidentCreateEvent . . Event
notify the Buyer on ncident creation . .
Notification
A request initiated by the Seller to UC 18: Send
POST
notify the Buyer on 1ncident attribute Event
/listener/incidentAttributeValueChangeEvent . .
value change. Notification
A request initiated by the Seller to UC 18: Send
POST /listener/incidentStatusChangeEvent notlfy the Buyer ON Incident.status Event
change. Notification

Table 7. Buyer side optional API endpoints
[02] The implementation MAY support API endpoints listed in Table 7. [MEF113 O2]

[CR2]<([O1]])) If any of endpoints listed in Table 5 is supported, then the Seller MUST
support all endpoints listed in Table 7. [MEF113 [CR2]<[O2]]

18/86

5.3. Specifying the Buyer ID and the Seller 1D

A business entity willing to represent multiple Buyers or multiple Sellers must follow
requirements of MEF 79 [MEF79] chapter 8.8, which states:

For requests of all types, there is a business entity that is initiating an Operation
(called a Requesting Entity) and a business entity that is responding to this request
(called the Responding Entity). In the simplest case, the Requesting Entity is the
Buyer and the Responding Entity is the Seller. However, in some cases, the
Requesting Entity may represent more than one Buyer and similarly, the Responding

Entity may represent more than one Seller.

While it is outside the scope of this specification, it is assumed that the Requesting
Entity and the Responding Entity are aware of each other and can authenticate
requests initiated by the other party. It is further assumed that both the Buying Entity
and the Requesting Entity know:

a) the list of Buyers the Requesting Entity represents when interacting with this
Responding Entity; and
b) the list of Sellers that this Responding Entity represents to this Requesting Entity.

In the API the vuyerta and se11ertd are represented as query parameters in each operation
defined in troubleTicketManagement.api.yaml and as attributes of events as described in

troubleTicketNotification.api.yaml.

[R3] If the Requesting Entity has the authority to represent more than one Buyer the request
MUST include suyerza query parameter that identifies the Buyer being represented [MEF79
R80]

[R4] If the Requesting Entity represents precisely one Buyer with the Responding Entity,
the request MUST NOT specify the vuyerra [MEF79 R81]

[RS] If the Responding Entity represents more than one Seller to this Buyer the request
MUST include se11er1a query parameter that identifies the Seller with whom this request is
associated [MEF79 R82]

[R6] If the Responding Entity represents precisely one Seller to this Buyer, the request
MUST NOT specify the seiierta [MEF79 R83]

[R7] If buyer1d OF sei1erta attributes were specified in the request same attributes MUST be

used in the notification payload.

5.4. Model Structural Validation

19/86

The structure of the HTTP payloads exchanged via Trouble Ticket API endpoints is defined
using OpenAPI version 3.0.

[R8] Implementations MUST use payloads that conform to these definitions.

5.5. Security Considerations

There must be an authentication mechanism whereby a Seller can be assured who a Buyer is
and vice-versa. There must also be authorization mechanisms in place to control what a
particular Buyer or Seller is allowed to do and what information may be obtained. However,
the definition of the exact security mechanism and configuration is outside the scope of this
document. It is specified by a separate MEF Project (MEF 128 [MEF128]).

20/ 86

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It
starts with Table 8 presenting a list and short description of all business use cases then
presents the variants of end-to-end interaction flows, and in the following subchapters

describes the API usage flow and examples for each of the use cases.

Table 8. lists the use cases supported by Trouble Ticket API (use case numbers as in MEF
113 for mapping):

Use
Use Case L.
Case Use Case Description
Name
#
A request initiated by the Buyer to create a Ticket in the Seller's
1 Create Ticket system to report an Issue experienced by the Buyer or their end-
user.
Retri The Buyer requests a list of Tickets from the Seller based on a
etrieve
2) i set of specified filter criteria. The Seller returns a summarized
Ticket List . .
list of Tickets.
Retrieve
3 Ticket by The Buyer requests detailed information about a single Ticket
Ticket based on a Ticket Identifier.
Identifier
Patch Ticket))
. A request by the Buyer to patch/partial update a Ticket based on
4 by Ticket]]
) a Ticket Identifier.
Identifier
Cancel
s Ticket by A request by the Buyer to cancel a Ticket based on a Ticket
Ticket Identifier.
Identifier
A reply from the Buyer confirming whether they agree that a
Ticket Ticket can be closed, since the reported Issue is no longer
6 Resolution observed. This reply is the action taken by a Buyer after
Confirmation receiving an Event Notification from the Seller with Event
Notification Type TICKET RESOLVED.
Retri The Buyer requests a list of Incidents from the Seller based on a
etrieve
15]) set of specified filter criteria. The Seller returns a summarized
Incident List

list of Incidents.

21/86

Use

Use Case L.
Case Use Case Description
Name
#
Retrieve
16 Incidentby = The Buyer requests detailed information about a single Incident
Incident based on an Incident Identifier.
Identifier
Register for)))
The Buyer requests to subscribe to Ticket and Incident
17 Event))
. . Notifications.
Notifications
18 Send Event ~ Send Event Notification The Seller sends a notification regarding

Notification a Ticket or Incident to the Buyer

Table 8. Use cases description
MEF 113 defines use cases related to three domains:

e Trouble Ticket
e WorkOrder
e Appointment

Figure 5 presents an example of an end-to-end flow that shows dependencies between all

the domains:

22 /86

- Q Q Q Q
Trouble‘ Ticket WorkOrder SearchTimeslot Appointment

1 POST ftroubleTicket request

L
F

2 status: acknowledged

i i
The Seller decides WaorkOrder for Trouble Ticket is needed. Iﬁ

| 3 POST /workOrderCreateEvent ‘

4 state: open

5 (causes status change)

6 status: pending

PR

The Buyer requests detailed information about a Work Order based on a WorkOrder Identifier. Iﬁ

7 GET /workOrderf{{id}} request

GET fwork Crder/{{id}} response
‘appointmentRequired=true’
‘
WarkOrder has "appointmentRequired=true’,
so the Buyer searches for a time slot for scheduling an Appointment.
9 POST /searchTimeSlot request -
|10 POST fsearchTimsSlot response S 3 u

11 POST fappointment request

12 state: confirmed

13 /POST appointment response

15 state: planned

_ 16 POST Jwork OrderStateChangeEvent

17 (causes status change)

18 status: inProgress

_ 19 POST froubleTicketStatusChangeBEvent

Figure 5. End-to-End API flow with Workorder and Appointment

* (1) The Buyer experiences the issue in the network and creates the Trouble Ticket.

(2) The Seller creates the Trouble Ticket and sets the status: acknowiedged.

The Seller decides that a WorkOrder with Appointment is needed to resolve the issue.

The Seller creates a Workorder in state open (4) and sends a workordercreatetvent (3)

(7-8) The Buyer requests detailed information about the WorkOrder.

(9) The Buyer proposes time slots for scheduling an Appointment, if the WorkOrder

reqllires the Appointment (the parameter set to appointmentRequir‘ed:tr‘ue)

(10) The Seller responds with the list of available time slots.

(11) The Buyer schedules an Appointment with agreed time slot.

(12) The Buyer sets the Appointment status to confirned.

(14-15) Appointment creation causes the WorkOrder state change to pianned
(17-18) WorkOrder state change to p1anned causes the Trouble Ticket status change back

1O in_progress.

23/86

The detailed business requirements of each of the use cases are described in sections 7 and 8
of MEF 113 [MEF113].

6.1. Use case 1: Create Ticket

This is the initial step for Trouble Ticket processing.
6.1.1. Interaction flow

The flow of this use case is very simple and is described in Figure 6.

I

The Buyer experiences an |ssue for a Product.id H

optional / [The Buyer queries for Incident related to affected Product.id]
| GET {{baseUrl}incident/ {{Product.id}}

| 200 Incident list
I(.. 1

If Incident foung, the Buyer may link the TroubleTicket with it. Iﬁ

T
| POST {{baseUrl}troubleTicket (TroubleTicket_Create)

|
L
>

A | validate Request
| i

| assign id
! status: “acknowledged”

i
alt 7 [successful inquiry] |

T |

|

[valida'tion or internal problem] .

i
i dxxu/Sxx : error response

Figure 6. Use Case 1 - Trouble Ticket create request flow

The Buyer experiences an Issue with a Product (Identified by Product.id) and may decide to
check if there is any Incident related to the affected Product. If yes, the Buyer may decide to
link it with the new Ticket. The Buyer sends a request with a rroubieticket_create type in the
body. The Seller performs request validation, assigns an id, and returns rrousiericket type in
the response body, with a status set to acknowredged. From this point, the Trouble Ticket is ready
for further processing. The Buyer must track the progress of the process by subscribing for
notifications (see chapter 6.9). The flow example with the use of Notifications is presented

in Figure 7

24 /86

POST {{haseUr}/hub with {{callbackUrl}}

201 confirmation with {{id}}

POST {{baseUr}}ftroubleTicket (TroubleTicket_Create)

Y

validate Request

alt [succesful inquiry]
201 TroubleTicket with {{id}}, status: “acknowledged”

loop / [until Trouble Ticket in terminal status]
{{callbackUrl}ylistener/troubleTicketStateChangeEvent ({{id}})

-
-

204 confirmation >

GET {{baseUr}}troubleTicket/{{id}}

L.
o

| 200 TroubleTicket in current state

[validatipn or internal problem]
dxx or 5xx error response

DELETE {{baseUrl}}/hub/{fid}}

204 confirmation

Figure 7. Trouble Ticket progress tracking - Notifications

Note: The context of notifications is not a part of the considered use case itself. It is
presented to show the big picture of end-to-end flow. This applies also to all further use case

flow diagrams with notifications.

6.1.2. Create Trouble Ticket - Request

Figure 8 presents the data model of the Trouble Ticket. The model of the request message
(TroubleTicket create) is @ subset of the Trounieticket model and contains only attributes that can
(or must) be set by the Buyer. The Seller then enriches the entity in the response with
additional information. For visibility of these shared attributes, the trousieticket_comon has been

introduced. Though, it is not to be used directly in the payload.

The full list of attributes is available in Section 7 and in the API specification which is an

integral part of this standard.

25/86

@ osason]

@© TroweTeret common
BYTES
® ® favies e
wevTEs el e
oo s SsueSarDee g
e et Tovies Govervedinact: VR Ovser s Type
s own rovies ity ToumeTekebronyType
extensive EBYTES ‘severity®. TroubleTicketSevertyType.
ZBviEs ity TroeTteype
Tovies
Telatedissue note. relatedContactinformation '\relatedEntity
i
(@ rowerereaenes © ® @) v ' @ rowetant
(@) TroubieTikemmype ‘acinowledged (@ TooueTicketpriontyType g v © noe (©) reatecEntiy creationDate*:date-tne
& — emalcdess sy
assistance cancelied Tow cortert: aring creationDater: dte-time outor®. iting name". sting @reterredTypet: string hret: string
information closed medium eationDate” date.fime description’. sting date*. date-time number®: string ref. string i string
Gescrpnon: 51 et sung g
sttt progress tion descrpton: et o S ouyersetotype || PomberEsensin sting ia* sy essuporte et
mairtenance pending crtical e 9 9 " . i ‘organization: string rolet: string ‘sellerPriority*: TroubleTicketPriority Type.
e raner sing esrahgType sty sing e g Selroeveey TouneTiaSevityType
Toopenad e S o TS
fize

postalAddress statusChangs \workOrder

@ roseanaiess

P
(@ versmsaried

:
| ®

(@ riowercve_cread]

amourt.foat
seler unts: DatasSizeUnt.

ChangeDate: dte-tme.

eons Cragarasear:son et g
Sreantest o o TromTeusTe
Sreanisute o
a5
v
Sreanawaoe sira

steetsulfic sirng

lgeographicSubAddress

©

buldnghame: sting
i sting
leveRiunber: sring

e
privteSteetiiame: sring
privateSrecthumber: sring

lsubUnit

© werswont

Ui
subUniType* st

Figure 8. Create Trouble Ticket Model

The snippet below presents an example of the Create Trouble Ticket Request:

TroubleTicket Create

"description”: "Connection is lost",
"externalld": "BuyerTicket-123",
"issueStartDate": "2021-06-02T14:21:11.090Z",
"priority": "critical",
"severity": "extensive",
"ticketType": "failure",
"attachment": [
{
"attachmentId": "att-ee01",
"author": "John Example",
"creationDate": "2021-06-02T14:21:11.090Z",
"description”: "Print screen from the assurance system",
"mimeType": "image/jpeg",
"name": "Alarm",
"url": "https://example.com/documents/00000000-0000-1111-2222-000000001111",
"size": {
"amount":
"units":
s

"source": "buyer"

5.3,
"MBYTES"

}
1,
"note": [
{
"id": "note-1",
"author": "John Example",
"date": "2021-06-02T14:25:11.090Z",
"source": "buyer",
"text": "Couldn't reach the support on phone."
}
1
"relatedEntity": [<<A relation to a Product that this
{
"id": "01494079-6c79-4a25-8317-48284196d44d",
"role": "Issue Source",
"@referredType": "Product"
}
1,
"relatedContactInformation”: [

{

"emailAddress": "john.example@example.com",

Ticket refers to>>

26/ 86

"name": "John Example",

"number": "+12-345-678-90",
"organization": "Buyer Example Co.",
"role": "reporterContact"

[R9] The Buyer's Create request MUST include the following attributes: [MEF113 R31]

® description

® observedImpact

® priority

® relatedContactInformation 1t€M With a role set to reporterContact
* relatedentity - (pointer to related Product instance)

® severity

® ticketType
Note: During the onboarding the Seller may require to provide an additional contact rote.

Note: 1t is up to the Seller's discretion on how to react in case the Buyer provides a contact
role that is not listed by this standard or agreed upon during the onboarding. Preferably the
Seller should return an error with a message stating which ro1es are accepted. It may also be

ignored

Note: The reiatedentity attribute is used to provide the related product iq. It is done by setting
the additional greferredtype t0 product. This follows the TMF pattern which enables compliance
and allows referring also other potential types in MEF (e.g. service). In this version, the only
type that is mentioned in the implemented requirements document is the rroduct and to ease
the request relatedentity.@referredtype and the reiatedentityype in the filter criteria has a default

value: product.

[RIO] If the attachment 18 provided, either the attachment.ur1 Or (attachment.content and
attachment.mimeType) MUST be spe<:1ﬁed [MEF113 RIS], [MEF113 R19]

6.1.3. Create Trouble Ticket - Response

The Seller responds with a rroubiericket type, which adds some attributes to the

TroubleTicket_create that was used in the Buyer's request.

Note: The term "Seller Response Code" used in the Business Requirements maps to HTTP

response code, where 2xx indicates Success and 4xx or sxx indicate Failure.

The following snippet presents the Seller's response. It has the same structure as in the

retrieve by identifier operation.

{
"id": "00000000-4444-5555-6666-000000000987",
"href": "{{baseUrl}}/troubleTicket/00000000-4444-5555-6666-000000000987",

27186

"creationDate": "2021-06-02T20:56:08.559Z",
"expectedResolutionDate": "2021-06-03T20:56:08.5592",
"lastUpdate": "2021-06-02T720:56:08.559Z",
"sellerPriority": "critical",
"sellerSeverity": "extensive",
"status": "acknowledged",
"description”: "Connection is lost", << as provided by the Buyer >>
"externalId": "BuyerTicket-123", << as provided by the Buyer >>
"issueStartDate": "2021-06-02T14:21:11.090Z", << as provided by the Buyer >>
"priority": "critical", << as provided by the Buyer >>
"severity": "extensive", << as provided by the Buyer >>
"ticketType": "failure", << as provided by the Buyer >>
"attachment": [
{ << as provided by the Buyer >>
"attachmentId": "att-001",
"author": "John Example",
"creationDate": "2021-06-02T14:21:11.090Z",
"description”: "Print screen from the assurance system",
"mimeType": "image/jpeg",
"name": "Alarm",
"url": "https://example.com/documents/00000000-0000-1111-2222-000000001111",
"size": {
"amount": 5.3,
"units": "MBYTES"
s
"source": "buyer"
}
1,
"note": [
{<< as provided by the Buyer >>
"id": "note-1",
"author": "John Example",
"date": "2021-06-02T14:25:11.090Z",
"source": "buyer",
"text": "Couldn't reach the support on phone."
}
1,
"relatedEntity": [
{<< as provided by the Buyer >>
"id": "01494079-6c79-4a25-8317-48284196d44d",
"role": "Issue Source",
"@referredType": "Product"
}
1,
"relatedContactInformation”: [
{<< as provided by the Buyer >>
"emailAddress": "john.example@example.com",
"name": "John Example",
"number": "+12-345-678-90",
"organization": "Buyer Example Co.",
"role": "reporterContact”
1
{<< a new item appended by the Seller >>
"emailAddress": "Seller.TicketContact@example.com",
"name": "Seller Ticket Contact"”,
"number": "+98-765-432-10",
"organization": "Seller Example Co.",
"role": "sellerTicketContact"

}
1
"relatedIssue": [
{
"@referredType”: "TroubleTicket",
"id": "00000000-1234-4321-1111-00000000888",
"creationDate": "2021-06-02T720:56:08.559Z",
"description”: "The issue is caused by.",
"relationshipType": "caused by",
"source": "seller"
}
1
"statusChange": [
{
"changeDate": "2021-06-02T720:56:08.560Z",
"status": "acknowledged"
}

28/86

The response to the create request does not contain all possible attributes, for example, the

resolutionnate 18 Valid only in the future lifecycle of the Trouble Ticket.

[R11] The Seller's response MUST include all and unchanged attributes' values as provided
in the request. [MEF113 R33]

These attributes are indicated above with an appropriate comment: << as provided by the Buyer >>.

[R12] The Seller MUST specify the following attributes in a response: [MEF113 R35]

® creationDate

® id

® relatedContactInformation - 1t€M With a role S€t tO sellerTicketContact
® sellerSeverity

® sellerPriority

® status

[R13] The status of the Ticket in the Seller's response MUST be acknowtedged. [MEF113 R34]
6.1.4. Trouble Ticket - Lifecycle

Figure 9 presents the Trouble Ticket state machine:

acknowledged

Buyer amends info

" iNProgress pending Buyer requests to cancel

\I
|

Buyer requests to cancel /Buyer requests tow
“‘ﬂ\.._i _'_'__/—'-"'
assessingCancellation

Seller accepts cancel

_‘H__S_eﬂer requires @‘_0_’7

No Buyer response
(Timeout / Pre-agreement)

cancelled

Figure 9. Trouble Ticket State Machine

After receiving the request, the Seller performs a validation of the message. If any problem
is found an Error response is provided. If the validation passes a response is provided with

TroubleTicket 1N acknowledged Status. Then the Seller starts working on resolving the issue and

29/ 86

moves the Trouble Ticket to inprogress state. From there, additional information might be
required to proceed and the Trouble Ticket moves to pending until one is provided. The
Trouble Ticket is set as reso1ved When the Seller claims the issue is fixed. From there the
Buyer can either reopen or close the Ticket (use cases described in following sections). The
Buyer may also request for a Trouble Ticket to be cancelled, while in acknouledged, pending, OF

inProgress State.

Table 9 presents the mapping between the API status names (aligned with TMF) and the
MEF 113 naming, together with statuses' description.

status MEF 113 name Description

A request to create a Ticket was

received and accepted by the Seller.

The Ticket create request has been
acknowledged ACKNOWLEDGED . .

validated and a Ticket has been

created by the Seller and allocated

a unique id.

The Ticket is in the process of
inProgress IN_ PROGRESS being handled and investigated for

resolution by the Seller.

The Buyer's Issue described in the
Ticket was resolved by the Seller.
The Seller assumes that normal
operation is re-established for the
resolved RESOLVED . o
Buyer's product and i snow waiting
for the Buyer to confirm that the
Issue they reported is no longer

observed.

The Buyer has confirmed that the
Issue they reported is no longer
observed, or the pre-defined time
frame (agreed upon between Buyer
closed CLOSED .
and Seller) for confirming that the
Issue has been resolved has passed
without a response by the Buyer.

This is a terminal state.

30/ 86

status MEF 113 name

Description

reopened REOPENED

The Buyer has verified that the
Issue described in the Ticket is still
observed and has not been resolved
satisfactorily. The Buyer rejects the
Seller's request to close the Ticket.
The Ticket has been reopened and
1s waiting for further actions from
the Seller.

pending PENDING

The Seller is waiting on the Buyer
to provide additional information
for the Ticket, or the Buyer to
schedule an Appointment for the
WorkOrder (linked to the Ticket) in
order to continue processing the
Ticket. This may result in the clock
being stopped for the service level
agreement until the Buyer has

responded to the request.

assessingCancellation AS SES SING_CANCELLATION

A request has been made by the
Buyer to cancel the Ticket and is
being assessed by the Seller to
determine whether to just close the
Ticket, or continue to resolve the
Issue to prevent similar Create
Ticket requests from other Buyers.
If the Seller chooses to resolve the
Issue, the Seller might create an
Incident or an internal Ticket for
the Issue, but that is outside the
scope of this document. After the
Seller has completed the
assessment, the Seller updates the

Ticket State to cancelled.

cancelled CANCELLED

Table 9. Trouble Ticket statuses

31/86

The Ticket has been successfully
cancelled by the Buy-er. The Buyer
will receive no further Event
Notifications for the Ticket. This is

a terminal state.

[R14] The Seller MUST support all Trouble Ticket statuses and their associated transitions
as described in Figure 9 and Table 9. [MEF113 R155]

[R15] If the Trouble Ticket was in pending status and an Appointment is created and the
related WorkOrder moves to pianned state, the Seller MUST update the Trouble Ticket status
tO inProgress. [MEF113 R91]

[R16] The Buyer MUST set the respective source-buyer attribute when adding any item to one
of the following list: note, attachment, O relatedIssue. [MEF113 RS], [MEF113 R14], [MEFI 13
R23]

[R17] The Buyer MUST NOT set the respective source-sei1er attribute when adding any item
to one of the following list: note, attachment, O relatedIssue. [MEF113 R9], [MEFI 13 RIS],
[MEF113 R24]

[R18] The Seller MUST set the source-se11er when adding any item to one of the following
list: note, attachment, O relatedIssue. [MEF113 R6], [MEF113 RIZ], [MEF113 R21]

[R19] The Seller MUST NOT set the source-buyer when adding any item to one of the
followmg list: note, attachment, O relatedIssue. [MEF113 R7], [MEF113 R13], [MEF113 RZZ]

[R20] Any item in a note O attachment list MUST NOT be modified or deleted once added.
[MEF113 R10], [MEF113 R16], [MEF113 R52], [MEF113 R56]

[O3] The Seller MAY append an item to note, attachment, OF relatedissue if required. [MEF113!
08], [MEF113! O9], [MEF113! O11]

[04] The Seller MAY add, modlfy, or delete an item in relatedcontactinformation With

role=sellerTechnicalContact 1f the Tleet State iS in acknowledged, inProgress, reopened, pending OI

assessingCancellation. [MEF113 010]
[O5] The Seller MAY add or modify an item in workorder list. [MEF113 O11]

[R21] The Seller MUST NOT modify or delete any items provided by the Buyer in
following lists: relatedContactInformation, note, attachment, relatedEntity, OI relatedIssue. [MEF113 R7],
[MEF113 R37].

[R22] The Seller MUST add a note when any of the following Trouble Ticket attributes are
updated: [MEF113 R36]

® expectedResolutionDate

® relatedIssue

6.2. Use Case 2: Retrieve Ticket List

32 /86

[O6] The Buyer MAY retrieve a list of Trouble Tickets by using a cet /troubleticket Operation
with desired filtering criteria. The attributes that are available to be used are: [MEF113 O12]

® externalld

® priority

® sellerPriority

® severity

® sellerSeverity

® ticketType

® status

® observedImpact

® relatedEntityId

® relatedEntityType

® creationDate.gt

® creationDate.lt

® expectedResolutionDate.gt
® expectedResolutionDate.lt
® resolutionDate.gt

® resolutionDate.lt

The Buyer may also ask for pagination with the use of the o#fset and 1init parameters. The
filtering and pagination attributes must be specified in URI query format RFC3986. Section

7.1.2. provides details about the implementation of pagination mechanism.

https://serverRoot/mefApi/sonata/troubleTicket/v2/troubleTicket?
status=inProgress&priority=critical&limit=10&offset=0

The example above shows a Buyer's request to get all Trouble Tickets that are in the
inprogress status and with critica1 priority. Additionally, the Buyer asks only for a first (offset-e)
pack of 10 results (1init-10) to be returned. The correct response (HTTP code 2¢0) in the
response body contains a list of rroubieticket_rind Objects matching the criteria. To get more

details (e.g. the item level information), the Buyer has to query a specific trouieticket by id.

[R23] The Seller MUST put the following attributes (if set) into the rrouwieticket rFind Object in
the response: [MEF113 R39]:

® id

® externalld

® relatedEntity
® observedImpact
® priority

® sellerPriority
® severity

® sellerSeverity

33 /86

ticketType
® status

® creationDate

® resolutionDate

expectedResolutionDate

[R24] In case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list.

@TroubleTicketType

@ TroubleTicketSeverityType

assistance
infarmation
installation
maintenance

minor
modlerate
significart
extensive

© TroubleTicket_Find

creationDate*: date-time
description®: string

@ MEFOhsenvedimpactType

degraded
intermittent
down

@TroubleTicketStatusType

acknowledged
assessingCancellation
cancelled

closed

inProgress

pending

resolved

recpened

®TroubIeTicketPriorityType

low
medium
high
critical

Figure 10. Use Case 2: Retrieve Ticket List - Model

pectedResolutionDate*: date-time
externalld®: string
id* string
priority®: TroubleTicketPriority Type
observedimpact*: MEFObservedmpactType
resolutionDate*; date-time
sellerPriority*: TroubleTicketPriority Type
sellerSeverity*: TroubleTicketSeverityType
severity*: TroubleTicketSeverity Type
status®: TroubleTicketStatusType
ticketType": TroubleTicketType

relatedEntity

1.7

v
© RelatedEntity

id*: string

href: string

role*: string
@referredType*: string

6.3. Use Case 3: Retrieve Ticket by Ticket Identifier

The Buyer can get detailed information about the Trouble Ticket from the Seller by using a
GET /troubleTicket/{{id}} Operation.

[R25] In case id does not allow to find a troubiericket instance in Seller's system, an error
response errorsea MUST be returned. [MEF113 R42]

[R26] The Seller MUST put the following attributes into the trousiericket Object in the
response: [MEF113 R44]

® id

® relatedEntity
® description
observedImpact
priority

® sellerPriority
® severity

® sellerSeverity

34 /86

® ticketType
® status
® creationDate

® relatedContactInformation

[R27] The Seller MUST provide all remaining optional attributes if they were previously
set by the Buyer or the Seller. [MEF113 R45]

[R28] The Seller's response to a Retrieve Ticket by Ticket Identifier request MUST include
the resolutionnate and a note added by the Seller describing how the Ticket was resolved if the
status 1S closed OT resolved. [MEF113 R46]

6.4. Use Case 4: Patch Ticket by Ticket Identifier

The update operation is realized with the use of the REST PATCH operation. For that
purpose, a specialized type trousieticket_update 18 provided. It consists of attributes limited to a

subset that includes only the Buyer updateable attributes.

The PATCH usage recommendation follows TMF 621 json/merge
(https://tools.ietf.org/html/rfc7386).

Figure 11 presents the model used in the PATCH request. The Seller responds with a

TroubleTicket TyPE.

35/86

(©) Attachmentvalue

attachmentld: string

author*: string

content: string

creationDate*: date-time
description: string

mimeType: string

name*: string

source™ MEFBuyerSellerType
url: string

(©) TroubleTicket_Update

externalld: string

issueStartDate: date-time

observedimpact”; MEF ObservedimpactType
priarity: TroubleTicketPriarity Type

severity: TroubleTicketSeverityType

attachment note

*

elatedContactinformation

*

relatedlssue

©) note

(©)Relatedcontactinformation

(©) 1ssueRelationship

author*: string

date*: date-time

id* string

source® MEFBuyerSellerType
text*: string

emailAddress™; string
name*: string

number*: string
numberExtensian: string
organization: string
rale*: string

size

12
(©) MEFBytesize

amount: float
units: DataSizelUnit

@referredType* string
creationDate™: date-time
description*: string

href: string

id*: string

relationshipType*: string
source* MEFBuUyerSellerType

postalAddress

v
(©) Fieldedaddress

city*: string

country*: string

locality: string

postcode: string
postcodeExtension: string
stateOrProvince: string
streetName*: string
streetNr: string
streetNrLast: string
streetNrLastSuffix string
streetNrSuffix string
streetSuffix string
streetType: string

[]

¥
(©) GeographicsubAddress

buildingName: string

id: string

levelNumber: string
levelType: string
privateStreethame: string
privateStreetNumber: string

[]

subUnit

v
(©) MEFSUBUNit

subUnitNumber*: string
subUnitType* string

geographicSubAddress

Figure 11. Patch request Model

[R29] The Buyer MUST include at least one of the following attributes of rroubieticket_update
in the PATCH request: [MEF113 R48]

® externalld
priority
severity
issueStartDate
observedImpact

® attachment - append Only

36 /86

* note - append only
® relatedContactInformation - append or modlfy the Buyer settable contacts

® relatedIssue

[R30] The Buyer MUST add a note to a Trouble Ticket when any of the following attributes
are patched: [MEF113 R49]

® priority
® severity
® jssueStartDate

® relatedIssue

[R31] If the new item in the attachnent list is provided, either the attachment.ur1 OF
(attachment.content and attachment.mimeType) MUST be Speciﬁed. [MEFI 13! R54]

[R32] The Buyer MUST NOT modify or delete any items provided by the Seller in
following lists: note, attachment, relatedContactInformation, OI relatedIssue. [MEF113 RSI], [MEF113
R52]

Note: The Buyer can add or update items in the above-mentioned lists by providing a full
list of existing items, and appending them with new ones or updating values of existing ones

(where possible).
Note: As stated before, items to the attachment and note lists may only be added.

[R33] In case i does not allow to find a troubiericket that is to be updated in Seller's system,
an error response erroraes MUST be returned. [MEF113 R53]

[R34] The Seller MUST return an error (errora22) if attributes requested to be changed by the
Buyer cannot be updated. [MEF113 R54]

[R35] The Seller MUST return an error (Er‘r‘or‘422) if the Ticket state 1S closed, assessingCancellation
OT cancelled. [MEFI 13 RSS]

The example below shows a request to patch a trousieticket that was created in section 6.1.3.
The first snippet provides the existing state of the rrouwieticket, Showing only parts that are to
be updated:

"note": [
{<< provided by the Buyer >>
"id": "note-1",
"author": "John Example",
"date": "2021-06-02T14:25:11.090Z2",
"source": "buyer",
"text": "Couldn't reach the support on phone."
}
1

"relatedContactInformation”: [
{<< provided by the Buyer >>
"emailAddress": "john.example@example.com",

37 /86

"name": "John Example",
"number": "+12-345-678-90",
"organization": "Buyer Example Co.",
"role": "reporterContact"

}s

{<< a new item appended by the Seller >>
"emailAddress": "Seller.TicketContact@example.com",
"name": "Seller Ticket Contact",
"number": "+98-765-432-10",
"organization": "Seller Example Co.",
"role": "sellerTicketContact"

The request below aims to:

e add a new note (existing cannot be modified or deleted)

i Change details of Buyer's reporterContact

{
"note": [
{<<previously existing>>
"id": "note-1",
"author": "John Example",
"date": "2021-06-02T14:25:11.090Z",
"source": "buyer",
"text": "Couldn't reach the support on phone."
1
{<<added new note>>
"id": "note-2",
"author": "Kate Example",
"date": "2021-06-02T19:25:11.090Z",
"source": "buyer",
"text": "Support reached after 5 hours"
}
1,

"relatedContactInformation”: [

{<< update details of reporterContact >>
"emailAddress": "Kate.example@example.com",
"name": "Kate Example",

"number": "+12-345-678-91",
"organization": "Buyer Example Co.",
"role": "reporterContact”

s

{<< provided by Seller - untouched >>
"emailAddress": "Seller.TicketContact@example.com",
"name": "Seller Ticket Contact",

"number": "+98-765-432-10",
"organization": "Seller Example Co.",
"role": "sellerTicketContact"

[R36] The Seller MUST NOT delete item from the workorder list. [MEF113 R57]

[R37] If the Trouble Ticket status was pending, the Seller MUST update it to inprogress.
[MEF113 R60]

6.5. Use case 5: Cancel Ticket by Ticket Identifier

The Buyer may request to cancel a Trouble Ticket by using rost /troubleticket/{{id}}/cancel
endpoint. This operation only requires providing the iq in the path and has an empty 2es

38 /86

confirmation response.

The sequence diagram below presents this use case in detail.

Q
Trouble Ticket

|Tr0ub|e Tickect in "acknowledged”, “inProgress” or "pending” b'

1 POST htroubleTicket/{{id}}/cancel request

>

2 find Trouble Tickect id

3 check Trouble Tickect status

4 (causes status change)

5 status: assessingCancellation

.8 POST froubleTicket/fid}}icancel response

_ 7 POST troubleTicketStatusCGhangeEvent

Seller completes the cancel assessment H

8 status: cancelled

e |

_ 9 POST troubleTicketStatusChangeEvent

Figure 12. Cancel Trouble Ticket Flow

The Seller verifies the request, then searches for a Trouble Ticket to be cancelled by given
ia. If found, the status is verified (acknowledged, inrogress OT pending allowed). If everything is
verified correctly, the Seller moves the ticket to the assessingcanceination status, sends a
successful response to a cancellation request followed by troubieticketstatuschangeevent and starts
assessing the cancellation process for the ticket. After successful assessment, the ticket

moves to cancelled status and another troubleTicketStatusChangeEvent 1S sent.

[R38] In case of a successful validation of the cancel request, the Seller MUST move the
ticket to assessingCancellation Status. [MEF113 R64]

[R39] In case i does not allow to find a troubiericket that is to be cancelled, an error response
errorsea MUST be returned. [MEF113 R62]

[R40] In case the Troubieticket 18 in one of statuses: resolved, closed, reopened, assessingCancellation, OT
cance11ed the Seller MUST return an error (error222). [MEF113 R63]

6.6 Use Case 6: Ticket Resolution Confirmation

As shown in Figure 6, the Seller after resolving the Issue moves the Trouble Ticket to a
resolved State. The Seller sends the troubieticketresoivedevent - @ dedicated notification type. This
is the point where the Buyer verifies the resolution and chooses to either close or reopen the

Trouble Ticket. The Buyer uses one of the dedicated actions:

® POST /troubleTicket/{{id}}/close

39/86

® PpPOST /troubleTicket/{{id}}/reopen

Q
Troublel Ticket

L
|Tr0ub|e Tickect in 'inProgress” status Iﬁ
¥

1 (resolves the Issue)

2 status: resolved

| 3 POST troubleTicketStatusChangefvent

_ 4 POST troubleTicketResolvedEvent

Buyer checks if Issue is resolved Iﬁ
|

alt) [Buyer accepts]
5 POST froubleTicket/{{id}/close

=

6 (closes the Ticket)

>

7 status: closed

e |

[Buyer rejects]
8 POST hroubleTicket/{id}}/reopen

9 (recpens the Ticket)

10 status: reopened

e |

_ 11 POST troubleTicketStatusChangpEvent

Figure 13. Ticket Resolution Confirmation Flow

[R41] The Buyer MUST perform the reopen action if the Issue on which the Ticket was based
has not been resolved in a satisfactory manner to the Buyer. [MEF113 R65]

[R42] The Buyer MUST perform the ciose action if the Issue on which the Ticket was based
has been resolved in a satisfactory manner to the Buyer. [MEF113 R65]

[R43] If performing the reopen action, the Buyer MUST include a reason describing why the
Buyer doesn't agree that the Trouble Ticket has been resolved in a satisfactory manner and is
requesting the Trouble Ticket to be reopened. [MEF113 R66]

[R44] In case i« does not allow to find a troubieticket that is to be reopened or closed, an error
response errorsea MUST be returned. [MEF113 R67]

[R45] If Buyer performs the reopen action, the Seller MUST change the Ticket status to
reopened. [MEFI 13 R69]

[R46] If Buyer performs the reopen action, the Seller MUST add the reason (provided by the
Buyer) to the note list of the Ticket with note.source=buyer and note.author=closureRejection. [MEF113
R68]

[R47] If Buyer performs the ciose action, the Seller MUST change the Ticket status tO closed.
[MEF113 R70]

40/ 86

Note: The Seller will return an error if the Buyer responds to the troubieticketresolvedevent after
the Ticket was closed due to the expiration of the pre-agreed timeframe/timeout for the
Buyer to confirm that the Issue on which the Ticket was based has been resolved

satisfactorily.

6.7. Use Case 15: Retrieve Incident List

[O7] The Buyer MAY retrieve a list of Incidents by using a et /incident Operation with
desired filtering criteria. The attributes that are available to be used are: [MEF113 020]

® priority

® severity

® impact

® incidentType

® status

® relatedEntityId

® relatedEntityType

® creationDate.gt

® creationDate.lt

® situationStartDate.gt
® situationStartDate.lt
® expectedClosedDate.gt
® expectedClosedDate.lt
® closedDate.gt

® closedDate.lt

The example of making a request and using pagination is provided in section 6.2 Please

refer to it as the rules also apply to this case.

[R48] The Seller MUST put the following attributes (if set) into the incident_rind Object in the
response: [MEF113 R126]:

® id

® relatedEntity

® description

® priority

® severity

® impact

® incidentType

® status

® creationDate

® situationStartDate
® expectedClosedDate

® closedDate

41/86

[R49] In case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list. [MEF 113* R127]

(©) incident_Find
closedDate: date-time
creationDate*; date-time

— . . description*: string
) TroubleTicketPriarityT
(® incidentType ® eTicketPriority Type expectedClosedDate: date-time
)) low href: string
installation medium id* string
N . . (- .
ma'git:”am“ high impact*: MEF ObservedimpactType
&P critical incidentType*: IncidentType
situationStartDate: date-time
priarity*; TroubleTicketPriaority Type
severity®. TroubleTicketSeverity Type
status* IncidentStatusType
relatedEntity
1.7
¥
(® TroubleTicketSeverity Type @ ncidentstatusType (©) RelatedEntity
minor closed @referredType™ string
moderate created href: string
significant m;m‘;ress id*: string
extensive role*; string

Figure 14. Use Case 15: Retrieve Incident List - Model

6.8. Use Case 16: Retrieve Incident by Incident Identifier

The Buyer can get detailed information about the Incident from the Seller by using a cer

/incident/{{id}} Operation.

[R50] In case id does not allow to find an ncident instance, an error response erroraesa MUST
be returned. [MEF113 R129]

[R51] The Seller MUST put the following attributes into the icident Object in the response:
[MEF113 R131]

® id

® relatedEntity

® description

® priority

® severity

® impact

® incidentType

® status

® situationStartDate
® creationDate

® relatedContactInformation - 1tems with role equal tO incidentContact

[R52] The Seller MUST provide all remaining optional attributes if they are set. [MEF113
R132]

42 /86

[R53] The Seller's response to a Retrieve Incident by Incident Identifier request MUST
include the ciosedoate if the status 1S closed. [MEFI 13 R133]

Table 10 presents the mapping between the API status names and the MEF 113 naming,

together with their description.

status MEF 113 name Description

created CREATED A new Incident has been created and allocated a unique ia.

inprogress IN_PROGRESS The Incident is in the process of being handled by the Seller.

The Situation described in the Incident was closed by the
closed CLOSED L. .
Seller. This is a terminal state.

Table 10. Incident states

Figure 15 presents the Incident state machine:

created

closed

Figure 15. Incident State Machine

[R54] The Seller MUST support all Incident statuses and their associated transitions as
described in Figure 15 and Table 10. [MEF113 R167]

43 /86

@ neisert

@ patasizeunt closedDate: date-time.

ores | o et

KBYTES

MBYTES elncvdenﬂvpe expectedClosedDate: date-time
e GBYTES installation
pnted TBYTES maintenance

PBYTES repair

EBYTES

s priority* Trouble TicketPriorityType

severity® TroubleTicketSeverityType

status*. IncidentStatusType

© soeRemtonsnip

@referredType” string

statusChange

© Aftachmentvalue creationDate*: date-time
description* string
attachmenti: string @© vt nref. string
® we| (@ @ pe| |2t sy i e [A— [m—
o - coses oA R ey g g || erise| | crngeat e
o T crated desrpton sting g o Rmeasamn s R, R snangescason sy
A e inProgress mimeType: string source’ uyerSellerType organzzton: st - @referredType” string status: IncidentStatusType
name*: string text*: string role string creationDate*: date-time ——
source™: MEFBuyerSellerType 9 description*: string
e —
relationshipType®: string
source™. MEFBuyerSellerType
size lpostalAddress

(©) Fieteoadaress

city* string
country* string

localty: string

posteode: string
posteadeExtension: string
stateOrProvince: string
streetName* string
streethr string
strestNrLast string
streetrLastsuffix string
streethrsuffic string
streetSuffc string
streetType: string

MEFByteSize

amount float
units: DataSizeUnit

lgeographicSubAddress

(©) Geographicsubadaress

buildinghiame: string
ig: string

levelNumber: string
levelType: string
privateStrestiame: string
privateStrestiumber. string

lsubUnit

MEFSubUnit

subUnithumber: string
subUnitType® string

Figure 16 Use Case 16: Incident Model

"id": "00001111-4321-6666-7777-000000003333",
"href": "{{baseUrl}}/incident/00001111-4321-6666-7777-000000003333",
"attachment": [
{
"attachmentId": "att-002",
"author": "Kate Example",
"creationDate": "2022-01-02T14:21:11.090Z",
"description”: "Print screen from the assurance system",
"mimeType": "image/jpeg",
"name": "Alarm",
"url": "https://example.com/documents/00000000-5555-4444-3333-222211110000",
"size": {
"amount": 2.6,
"units": "MBYTES"
})
"source": "seller"
}
1
"creationDate": "2022-01-12T723:09:44.8147",
"description": "Hardware failure",
"expectedClosedDate": "2022-01-13723:09:44.814Z",
"impact": "down",
"incidentType": "repair",
"situationStartDate": "2022-01-12T723:09:44.814Z",
"priority": "critical",
"relatedContactInformation”: [
{
"emailAddress": "Incident.Contact@example.com”,
"name": "Incident Contact",
"number": "+98-765-432-10",
"organization": "Seller Example Co.",
"role": "incidentContact"
}
1,
"relatedEntity": [
{
"id": "01494079-6c79-4a25-83f7-48284196d44d",
"role": "Affected Product”,
"@referredType": "Product"

44/ 86

"relatedIssue": [

{
"@referredType”: "TroubleTicket",
"creationDate": "2022-01-12T723:09:44.815Z",
"description”: "Reported failure is causing referred Trouble Ticket",
"id": "00000000-4444-5555-6666-000000000987",
"relationshipType": "causes",
"source": "seller"

}
1,
"severity": "extensive",
"status": "created"

¥

6.9. Use case 17: Register for Event Notifications

[R55] The Seller MUST support Event Notifications. [MEF113 R134]

[R56] The Seller MUST support all of TroubleTicketeventType: [MEFI 13 R135]

® troubleTicketAttributeValueChangeEvent
® troubleTicketInformationRequiredEvent
® troubleTicketResolvedEvent

® troubleTicketStatusChangeEvent

[R57] The Buyer MUST support and register for all troubieticketeventtype. [MEF113 R136]

To register for notifications the Buyer uses the registerListener Operation from the API: rost

/nub. The request model contains only 2 attributes:

e callback - mandatory, to provide the callback address the events will be notified to,

* query - Optional, to provide the required types of event.

The usage of a combination of these attributes fulfills the [MEF113 R137], [MEF113 R138],
[MEF113 R139] requirements.

By using a simple request:

{

"callback": "https://buyer.com/listenerEndpoint™
}

The Buyer subscribes for notification of all types of events. Those are:

® troubleTicketAttributeValueChangeEvent
® troubleTicketInformationRequiredEvent
® troubleTicketResolvedEvent

® troubleTicketStatusChangeEvent

® incidentCreateEvent

® incidentAttributeValueChangeEvent

® incidentStatusChangeEvent

45/ 86

If the Buyer wishes to receive only notification of a certain type, a query must be added:

{
"callback": "https://buyer.com/listenerEndpoint”,
"query": "eventType=troubleTicketResolvedEvent"

¥

If the Buyer wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

eventType=troubleTicketResolvedEvent,troubleTicketStatusChangeEvent

or

eventType=troubleTicketResolvedEvent&eventType=troubleTicketStatusChangeEvent

The query formatting complies to RCF3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this

standard requires only eventType attribute to be supported.
[R58] cventtype 1s the only attribute that the Seller MUST support in the query.

The Seller responds to the subscription request by adding the i4 of the subscription to the

message that must be further used for unsubscribing.

{

"id": "00000000-0000-0000-0000-000000000678",
"callback": "https://buyer.com/listenerEndpoint”,
"query": "eventType=troubleTicketResolvedEvent"

¥

Example of a final address that the Notifications will be sent to (for Sonata,

tPoubleTicketResolvedEvent):

® https://buyer.com/listenerEndpoint/mefApi/sonata/troubleTicketNotification/v2/listener/troubleTicketResolvedEv

ent

6.10. Use case 18: Send Event Notification

Notifications are used to asynchronously inform the Buyer about the respective objects and
attributes changes. The Seller's synchronous response to a Trouble Ticket create requests are
considered to act as a Create Notification so there is no explicit respective Create
Notification type. The next notification must be sent when the state changes compared to the

previously sent one.

46/ 86

[R59] The Seller MUST send Notifications of eventtypes to Buyers who have registered for
them. [MEF113 R141]

[R60] The Seller MUST NOT send Notifications for eventrypes to Buyers who have not
registered for them. [MEF113 R140]

The Figure below shows all entities involved in the Notification use cases.

. TroubleTicketEventType
@ Event @ IncidentEventType @

. - troubleTicket Attribute/alueChangeEvent
incidentCreateEvent troubleTicketinformationRequiredEvent
incidentAttribute’alueChangeEvent d

eventld*: string

eventTime*: date-time troubleTicketResolvedEvert

/ \ incidentStatusChangeEvert troubleTicketStatusChangeEvent
© IncidentEvent © TroubleTicketEvent
evertType*: IncidentEventType eventType*: TroubleTicketEvertType
event event

1 1

Y h 4
©IncidentEventPayl0ad ©TrnubleTicketEventPayluad
sellerld: string sellerld: string
id*: string id*: string
href: string href: string
buyerld: string buyerld: string

Figure 17. Use Case 18. Notification Data Model

The following snippet presents an example of troubleticketresolvedevent

"eventId": "event-001",
"eventType": "troubleTicketResolvedEvent",
"eventTime": "2021-06-03T15:56:08.559Z2",
"event": {

"id": "00000000-4444-5555-6666-000000000987"

Note: the body of the event carries only the source object's ia. The Buyer needs to query it
later by id to get details.

To stop receiving events, the Buyer has to use the unregistertistener Operation from the oevere

/nub/{id} endpoint. The iq is the identifier received from the Seller during the listener
registration.

The table below presents the mapping between the API Notification types' names and the
ones in MEF 113 together with event descriptions. The inconsistencies are caused by API
naming convention and using the TMF event types as the base for this API.

API name MEF 113 name Description

47/ 86

API name

MEF 113 name

Description

troubleTicketAttributeValueChangeEvent

TICKET _UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a

troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent

TICKET STATE CHANGE

A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent

TICKET INFO REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status 1S pending. Note:
The Buyer uses the Patch
operation to provide more

information for a Ticket.

troubleTicketStatusChangeEvent

TICKET _RESOLVED

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status is
resolved. NOte: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen

operations

incidentCreateEvent

INCIDENT CREATE

A new Incident was created
by the Seller.

incidentAttributeValueChangeEvent

INCIDENT UPDATE

An open Incident was updated
by the Seller.

incidentStatusChangeEvent

INCIDENT _STATE CHANGE

Table 11. Notification types mapping

48/ 86

An Incident status was
changed by the Seller.

[R61] The Seller MUST send a troubleticketattributevaluechangetvent Whenever the Seller updates
any of the following Ticket attributes: [MEF113 R156]

® sellerSeverity

® sellerPriority

® expectedResolutionDate

® note

® attachment

® relatedContactInformation

® relatedIssue

* workorder - including updates to a Referenced WorkOrder

[R62] The Seller MUST send a troubleticketstatuschangeevent Whenever a Ticket status change
occurs. [MEF113 R157]

[R63] Whenever the Ticket status is changed to pending, the Seller MUST add a note to the
Ticket to inform the Buyer about what additional information is required for the Ticket or
for the Buyer to schedule an Appointment to continue processing the Ticket. [MEF113
R159]

[R64] The Seller MUST send a troubleTicketInformationRequiredEvent whenever the Ticket status has
been changed to pending and the appointnentrequired attribute for all WorkOrders linked to the
Ticket are fa1se. [MEF113 R160]

[R65] If the appointmentrequired attribute for a Workorder is true, the Seller MUST set the status
of the Ticket associated to the Workorder to pending. [MEF113 R158]

[R66] The Seller MUST send an troubieticketresolvedevent Whenever the Ticket status is changed
tO resolved. [MEF113 R161]

[R67] The Seller MUST send an incidentcreateevent Whenever a new Incident has been created.
[MEF113 R168]

[R68] The Seller MUST send a incidentattributevaluechangeevent Whenever the Seller updates any
of the Incident attributes (excluding status) [MEF113 R169]

[R69] The Seller MUST send a incidentstatuschangetvent Whenever an Incident status change
occurs. [MEF113 R170]

[R70] When the Incident status moves to inProgress, the Seller MUST set the expectedClosedDate.
[MEF113 R171]

[R71] The Seller MUST NOT send an tncidgentevent to @ Buyer for an Incident impacting a
Product that the Seller has not activated on behalf of the Buyer. [MEF113 R172]

49/ 86

7. API Details

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and the
appropriate response payload. The Product Order API uses the error responses as depicted
and described below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the error.

: Error400Code

®Errur4mcme @ Errar
missingQueryParameter -
missingQuery\alue missingCredentials = :":::uﬁngew |Ir:"g
invalidQuery invalidCredentials v ot am‘:eErmg\ i
invalidBody o A _

/-"""/- - N\
7
o
./
@ Error422Code
Error403Code missingProperty

@ invalidalue @ Error400 @ Error401 @ Error403 ©Errnr404 @Ermrmﬂ @ Errord22 ©Errnr500

accessDenied invalidFormat
forbiddenReguester referenceNotFound code”; Error400Cade code”: Error401Code code*; Error403Code code*; string code”: string
tooManyUsers L operty
tooManyRecords
otherlssus

code": Error422Code

propertyPath: string code*. string

Figure 18. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used
directly. The code in the HTTP header is used as a discriminator for the type of error returned

in runtime.

Name Type Description

, Text that provides mode details and corrective actions related to
message string .)
the error. This can be shown to a client user.

_ Text that explains the reason for the error. This can be shown to a
reason® string .
client user.

referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc723 1#section-6.5.1)

50/ 86

Inherits from:

e Error

Name Type Description

One of the following error codes:
- missingQueryParameter: The URI is missing a required query-
string parameter

code* Error400Code - missingQueryValue: The URI is missing a required query-string
parameter value
- invalidQuery: The query section of the URI is invalid.
- invalidBody: The request has an invalid body

7.1.1.3. enun Error400Code

Description: One of the following error codes:

e missingQueryParameter: The URI is missing a required query-string parameter
e missingQueryValue: The URI is missing a required query-string parameter value
e invalidQuery: The query section of the URI is invalid.

e invalidBody: The request has an invalid body

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)
Inherits from:

e Error

Name Type Description

One of the following error codes:
code* Error401Code - missingCredentials: No credentials provided.

- invalidCredentials: Provided credentials are invalid or expired

7.1.1.5. enun Error401Code

Description: One of the following error codes:

* missingCredentials: No credentials provided.

e invalidCredentials: Provided credentials are invalid or expired

7.1.1.6. Type Error403

51/86

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc723 1#section-6.5.3)

Inherits from:

e Error

Name Type Description

This code indicates that the server understood the request but
refuses to authorize it because of one of the following error

codes:
code* Error403Code . i
- accessDenied: Access denied

- forbiddenRequester: Forbidden requester

- tooManyUsers: Too many users

7.1.1.7. enun Error403Code

Description: This code indicates that the server understood the request but refuses to

authorize it because of one of the following error codes:

 accessDenied: Access denied
 forbiddenRequester: Forbidden requester

* tooManyUsers: Too many users
7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc723 1#section-6.5.4)

Inherits from:

e Error
Name Type Description
The following error code:

code* string .
- notFound: A current representation for the target resource not found

7.1.1.9. Type Error409

Description: Conflict (https://datatracker.ietf.org/doc/html/rfc723 1#section-6.5.8)
Inherits from:

e Error

52 /86

Name Type Description

The following error code: - conflict: The client has provided a value

code* string

whose semantics are not appropriate for the property.

7.1.1.10. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the errora2>

data type. Each list item describes a business validation problem. This type introduces the

propertypath attribute which points to the erroneous property of the request, so that the Buyer

may fix it easier. It is highly recommended that this property should be used, yet remains

optional because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

e Error
Name Type
code* Error422Code

Description

One of the following error codes:

- missingProperty: The property the Seller has expected is
not present in the payload

- invalidValue: The property has an incorrect value

- invalidFormat: The property value does not comply with
the expected value format

- referenceNotFound: The object referenced by the
property cannot be identified in the Seller system

- unexpectedProperty: Additional property, not expected
by the Seller has been provided

- tooManyRecords: the number of records to be provided
in the response exceeds the Seller's threshold.

- otherlssue: Other problem was identified (detailed

information provided in a reason)

propertyPath string

7.1.1.11. enun Error422Code

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

Description: One of the following error codes:

53 /86

» missingProperty: The property the Seller has expected is not present in the payload

e invalidValue: The property has an incorrect value

e invalidFormat: The property value does not comply with the expected value format

 referenceNotFound: The object referenced by the property cannot be identified in the
Seller system

e unexpectedProperty: Additional property, not expected by the Seller has been provided

e tooManyRecords: the number of records to be provided in the response exceeds the
Seller's threshold.

e otherlssue: Other problem was identified (detailed information provided in a reason)
7.1.1.12. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc723 1#section-6.6.1)
Inherits from:

e Error

Name Type Description

The following error code:
code* string - internalError: Internal server error - the server encountered an

unexpected condition that prevented it from fulfilling the request.

7.1.1.13. Type Error501

Description: Not Implemented. Used in case Seller is not supporting an optional operation
(https://tools.ietf.org/html/rfc723 1#section-6.6.2)

Inherits from:

e Error

Name Type Description

. The following error code:
code* string
- notImplemented: Method not supported by the server

7.1.2. Response pagination

A response to retrieve a list of results (€.g. et /productofferingoualification) can be paginated.

The Buyer can specify following query attributes related to pagination:

e 1init - number of expected list items

o orrset - Offset of the first element in the result list

54 /86

The Seller returns a list of elements that comply with the requested 1:init. If the requested
1init 18 higher than the supported list size the smaller list result is returned. In that case, the
size of the result is returned in the header attribute x-resuit-count. The Seller can indicate that

there are additional results available using:

* x Total-count header attribute with the total number of available results

® X-Pagination-Throttled header set to true

[R72] Seller MUST use either x-totai-count OT x-pagination-Throttled to indicate that the page was

truncated and additional results are available.

7.2. Management API Data model

Figure 19 presents the whole Trouble Ticket Management data model the data types,
requirements related to them, and mapping to MEF 113 specifications are discussed later in

this section.

Figure 19. Trouble Ticket Management Data Model
7.2.1. TroubleTicket

7.2.1.1. Type TroubleTicket Common

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed

by a Trouble Ticket management system Skipped properties: id,href

Name Type Description MEF 11

Attachments to the Ticket,
such as a file, screen shot or
embedded content.
attachment AttachmentValue[] Attachments may be added but Attachm
may not be modified or
deleted (for historical

reasons).

55/ 86

Name Type Description MEF 11
Summarized description of the
description™ string Issue the Buyer is Descript
experiencing.
Identifier provided by the
Buyer
] Buyer to allow the Buyer to)
externalld string) . Ticket
use as a search attribute in)
. .) Identifie
Retrieve Ticket List.
The date indicating when the
)] Buyer first observed the Issue, Issue Stz
1ssueStartDate date-time . .
to provide the Seller with Date
additional insight.
A set of comments or
information associated to the
Ticket. This list can be empty.
note Note[] Notes
Notes may be added but may
not be modified or deleted (for
historical reasons).
The type of impact observed ~ Observe:
observedImpact* MEFObservedlmpactType
by the Buyer. Impact
The priority of the Trouble
Ticket and how quickly the
issue should be resolved.
L _ o Example: Critical, High, L
priority* TroubleTicketPriority Type Priority

Medium, Low. The value is set
by the ticket management
system considering the

severity, ticket type etc...

56 / 86

Name Type Description MEF 11
Party playing a role for this
Trouble Ticket. The 'role' isto Reporter
specify the type of contact as Contact,
specified in MEF 113: Buyer
Reporter Contact Technice
('role=reporterContact') - Contacts
relatedContactInformation® RelatedContactinformation[] REQUIRED in the request Seller
Buyer Technical Contacts Ticket
('role=buyerTechnicalContact') Contact,
Seller Ticket Contact Seller
('role=sellerTicketContact') Technice
Seller Technical Contact Contacts
('role=sellerTechnicalContact')
An entity that is related to the
)) ticket such as a bill, a product, Product
relatedEntity* RelatedEntity][])]))
etc. The entity against which Identifie
the ticket is associated.
A list of Related Issue
' _ Related
, , relationships. Represents .
relatedIssue IssueRelationship[] . . Tickets ¢
relationships to other Trouble .
) . Incidents
Tickets and Incidents.
The severity or impact (ITIL)
severity* TroubleTicketSeverityType of the Issue as evaluated by Severity
the Buyer.
The presumed cause of the
ticketType* TroubleTicketType Trouble Ticket as evaluated by Type

7.2.1.2. Type TroubleTicket Create

the Buyer.

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed

by a Trouble Ticket management system The modeling pattern introduces the connon

supertype to aggregate attributes that are common to both troubieticket and troubieticket _create. It

this case the Create type has a subset of attributes of the response type and does not

introduce any new, thus the create type has an empty definition.

Inherits from:

e TroubleTicket Common

7.2.1.3. Type TroubleTicket

57 /86

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed

by a Trouble Ticket management system

Inherits from:

e TroubleTicket Common

Name Type Description MEF 113
The date on which Ticket
creationDate* date-time the Trouble Ticket Creation
was created Date
The date provided
by the Seller to Target
expectedResolutionDate date-time indicate when the Resolved
Ticket is expected Date
to be resolved
Hyperlink, a Not
. reference to the represented
href string . .
Trouble Ticket in MEF
entity 113
Unique (within
) . the Seller Ticket ~ Ticket
id* string C .) .
domain) identifier Identifier
for the Ticket.
The date the
. . Ticket status was Resolved
resolutionDate date-time
set to resolved by Date
the Seller
The priority
(ITIL) is based on
the assessment of
the impact and
urgency of how
quickly the Ticket
o . . Seller
sellerPriority* TroubleTicketPriority Type should be o
Priority

resolved after
evaluation by the
Seller of the
impact of the
Issue on the

Buyer.

58 / 86

Name Type Description MEF 113
The severity or
impact (ITIL) of
))) the Issue on the Seller
sellerSeverity* TroubleTicketSeverityType .
Buyer as Severity
evaluated by the
Seller.
The current status .
. Ticket
status*™ TroubleTicketStatusType of the Trouble Stat
ate
Ticket
The status change
. . Not
history that is
. _ represented
statusChange TroubleTicketStatusChange[] associated to the MEF
in
ticket. Populated 113
by the Seller.
A reference to a
set of WorkOrders
to be performed
under the
workOrder WorkOrderRef[] Workorders

7.2.1.4. Type TroubleTicket Find

responsibility of
Seller
technician(s) to

resolve the Ticket.

Description: This class represents a single list item for the response of 1istrroubiericket

operation.

Name Type Description MEF 113
The date on which Ticket

creationDate* date-time the Trouble Ticket Creation
was created Date
Summarized

.) description of the o
description™ string Description

Issue the Buyer is

experiencing.

59/ 86

Name Type

Description

MEF 113

expectedResolutionDate* date-time

The date provided
by the Seller to

indicate when the
Ticket is expected

to be resolved

Target
Resolved
Date

externalld* string

Additional
identifier coming
from an external

system

Buyer
Ticket
Identifier

id* string

Unique identifier
of the Trouble
Ticket

Ticket
Identifier

priority* TroubleTicketPriority Type

The priority (ITIL)
is based on the
assessment of the
impact and
urgency of how
quickly the Ticket
should be resolved
as evaluated by the
Buy-er. The
Priority is used by
the Seller to
determine the
order in which
Tickets get
resolved across

Buyers.

Priority

relatedEntity* RelatedEntity[]

An entity that is
related to the ticket
such as a bill, a
product, etc. The
entity against
which the ticket is

associated.

Product
Identifier

observedImpact* MEFObservedImpactType

The type of impact
observed by the
Buyer.

60/ 86

Name

Type

Description

MEF 113

resolutionDate*

date-time

The date the Ticket
status was set to

resolved by the
Seller

Resolved
Date

sellerPriority*

TroubleTicketPriority Type

The priority (ITIL)
is based on the
assessment of the
impact and
urgency of how
quickly the Ticket
should be resolved
after evaluation by
the Seller of the
impact of the Issue

on the Buyer.

Seller
Priority

sellerSeverity*

TroubleTicketSeverity Type

The severity or
impact (ITIL) of
the Ticket on the
Buyer as evaluated
by the Seller.

Seller

Severity

severity*

TroubleTicketSeverity Type

The severity or
impact (ITIL) of
the Ticket as
evaluated by the
Buyer.

Severity

status*

TroubleTicketStatusType

The current status
of the Trouble
Ticket

Not
represented
in MEF
113

ticketType*

TroubleTicketType

7.2.1.5. Type TroubleTicket Update

The presumed
cause of the
Trouble Ticket as
evaluated by the
Buyer.

Type

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed

by a Trouble Ticket management system

61/86

Name Type Description MEF 1

Attachments to the Ticket, such
attachment AttachmentValue[] as a file, screen shot or Attachr

embedded content.

ternalld i Additional identifier coming Buyer 1
externa strin
8 from an external system Identifi

The date indicating when the
. . Buyer first observed the Issue, to .
issueStartDate date-time) . 1ssueSt:
provide the Seller with

additional insight.

A set of comments or
information associated to the
Ticket. This list can be empty.
note Note[] Notes
Notes may be added but may not
be modified or deleted (for

historical reasons).

The priority of the Trouble
Ticket and how quickly the issue
should be resolved. Example:
priority TroubleTicketPriorityType Critical, High, Medium, Low. Priority
The value is set by the ticket
management system considering

the severity, ticket type etc...

. . Reporte
Party playing a role for this
Contact
quote. If
y ‘ Buyer
instantSyncQuote=false’ then .
: Technic
the Buyer MUST specify Buyer Contact
ontac
relatedContactinformation RelatedContactinformation[] Contact Information Seller 1
eller
('role=buyerContactInformation")
i Contact
and the Seller MUST specify
. Seller
Seller Contact Information)
) Technic
('role=sellerContactInformation')
Contact
A list of Related Issue
)] Related
_ , relationships. Represents .
relatedIssue [ssueRelationship[] . . Tickets
relationships to other Trouble .
Inciden

Tickets and Incidents.

62 /86

Name Type Description MEF 1

The severity of the issue.

Indicate the implication of the Not
severity TroubleTicketSeverityType issue on the expected represel

functionality e.g. of a system, MEEF 11

application, service etc...

7.2.1.6. enun TroubleTicketPriorityType

Description: Possible values for the priority of the Trouble Ticket

Value
low
medium
high

critical

7.2.1.7. Type IssueRelationship

Description: Represents relationships to other Trouble Tickets and Incidents

Name Type Description MEF 113
Related
. The type of the referred Issue Ticket Or
@referredType* string . . .
(Incident or TroubleTicket) Incident
Type
) . Relation
]) The date the relationship was)
creationDate* date-time Creation
created
Date

A description of the reason for ~ Relation

description* string the Relation Source to set the Reason
relationship Description
. Not
] Reference of the Trouble Ticket
href string i represented
or Incident]
in MEF 113
))) Related
Unique identifier of the .
. . Ticket Or
id* string referenced Issue (Trouble)
) . Incident
Ticket od Incident))
Identifier

63 /86

Name Type Description MEF 113

Type of the Trouble Ticket

)]) relationship can be blocks, Relation
relationshipType* string)
depends on, duplicates, causes, Type

etc...
Indicates if this Related Issue)
Relation
source™ MEFBuyerSellerType was added by the Buyer or the
Seller Source
eller.

7.2.1.8. enun TroubleTicketSeverityType

Description: Possible values for the severity of the Trouble Ticket

Value
minor
moderate
significant

extensive

7.2.1.9. enun MEFObservedlmpactType

Description: An enumeration of the possible values of impact observed by the Buyer.

* degraded: When the Product is impacted and not meeting the Product specifications.
* intermittent: When the Product is not operational as intended on an intermittent basis.

e down: When the Product is non-operational.

Value
degraded
intermittent

down

7.2.1.10. Type TroubleTicketStatusChange

Description: Holds the status notification reasons and associated date the status changed,

populated by the server

Name Type Description MEF 113

The date and time the Not represented in

changeDate date-time
status changed. MEEF 113

64 / 86

Name Type Description MEF 113

The reason why the Not represented in

changeReason strin
8 & status changed. MEF 113

_ Not represented in
status TroubleTicketStatusType Reached status
MEF 113
7.2.1.11. enun TroubleTicketStatusType

Description: Possible values for the status of the Trouble Ticket

status MEF 113 name Description

A request to create a Ticket was

received and accepted by the Seller.

The Ticket create request has been
acknowledged ACKNOWLEDGED . .

validated and a Ticket has been

created by the Seller and allocated

a unique id.

A request has been made by the
Buyer to cancel the Ticket and is
being assessed by the Seller to
determine whether to just close the
Ticket, or continue to resolve the
Issue to prevent similar Create
Ticket requests from other Buyers.
assessingcancellation ASSESSING CANCELLATION If the Seller chooses to resolve the
Issue, the Seller might create an
Incident or an internal Ticket for
the Issue, but that is outside the
scope of this document. After the
Seller has completed the
assessment, the Seller updates the

Ticket State to cancelled.

The Ticket has been successfully

cancelled by the Buy-er. The Buyer
cancelled CANCELLED will receive no further Event

Notifications for the Ticket. This is

a terminal state.

65/ 86

status MEF 113 name

Description

closed CLOSED

The Buyer has confirmed that the
Issue they reported is no longer
observed, or the pre-defined time
frame (agreed upon between Buyer
and Seller) for confirming that the
Issue has been resolved has passed
without a response by the Buyer.

This is a terminal state.

IN_PROGRESS

inProgress

The Ticket is in the process of
being handled and investigated for

resolution by the Seller.

pending PENDING

The Seller is waiting on the Buyer
to provide additional information
for the Ticket, or the Buyer to
schedule an Appointment for the
WorkOrder (linked to the Ticket) in
order to continue processing the
Ticket. This may result in the clock
being stopped for the service level
agreement until the Buyer has

responded to the request.

reopened REOPENED

The Buyer has verified that the
Issue described in the Ticket is still
observed and has not been resolved
satisfactorily. The Buyer rejects the
Seller's request to close the Ticket.
The Ticket has been reopened and
1s waiting for further actions from
the Seller.

resolved RESOLVED

7.2.1.12. enun TroubleTicketType

66 / 86

The Buyer's Issue described in the
Ticket was resolved by the Seller.
The Seller assumes that normal
operation is re-established for the
Buyer's product and i snow waiting
for the Buyer to confirm that the
Issue they reported is no longer
observed.

Description: Possible values for the type of the Trouble Ticket:

» assistance: Requesting help for a situation (not a failure) requiring attention that is not
categorized.

 information: Buyer is requesting information on the Issue

« installation: Related to installation issue. Provisioning is complete, but Product is not
operational.

e maintenance: Any scheduled or non-scheduled maintenance related Issue.

Value MEF 113
assistance ASSISTANCE

information INFORMATION

installation = INSTALLATION

maintenance MAINTENANCE

7.2.1.13. Type Reason

Description: An object to convey a reason for the operation.

Name Type Description MEF 113

R A text description of why given operation was Closure Rejection
reason® strin
8 requested. Reason

7.2.1.14. Type WorkOrderRef

Description: A reference to an WorkOrder resource.

Name Type Description MEF 113

href string Hyperlink to the referenced WorkOrder. Not represented in MEF 113

id* string Identifier of the referenced WorkOrder. Workorder Identifier
7.2.2. Incident
7.2.2.1. Type Incident
Description: An Incident is a record of an issue that is not part of normal operation in the

Seller's network that has a possible negative impact on the operability of the network on one

or more Buyers.

Name Type Description MEF

67 /86

Name Type Description MEF
Attachments to the Ticket, such
as a file, screenshot, or
embedded content. Attachments
attachment AttachmentValue[] Attact
may be added but may not be
modified or deleted (for
historical reasons).
) The date the Incident status was Incide
closedDate date-time
set to closed by the Seller Close
.) Incide
. i The date on which the Incident)
creationDate* date-time Creati
was created
Date
description*® string Description of the Incident Descri
The date provided by the Seller Incide
expectedClosedDate date-time to indicate when the Incidentis ~ Expec
expected to be closed. Closec
. Not
. Hyperlink, a reference to the
href string)] repres
Incident entity .
in ME
Unique (within the Seller)
: . D . Incide
id* string domain) identifier for the .
] Identit
Incident.
. The type of impact observed by Incide
impact* MEFObservedlmpactType
the Buyer. Impac
The presumed cause of the)
o .) Incide
incidentType* IncidentType Incident as evaluated by the
Type
Seller.
A set of unstructured comments
or information associated to the)
_ Incide
note Note[] Incident. Notes may be added
. Notes
but may not be modified or
deleted (for historical reasons).
The priority (ITIL) is based on
the assessment of the impact and
o) o urgency of how quickly the Incide
priority* TroubleTicketPriority Type) o
Incident should be resolved after Priorit

evaluation by the Seller of the

impact of the Incident.

68 / 86

Name Type Description MEF
Party playing a role in this
Incident. The 'role' is to specify .
) Incide
the type of contact as specified
. . Conta
)) in MEF 113: Incident Contact)
relatedContactInformation* RelatedContactInformation[] . Incide
('role=incidentContact') -
Techn
REQUIRED to be set by the
. . Conta
Seller Incident Technical Contact
('role=incidentTechnicalContact')
A set of identifiers of the
)) Products on which the Incident Produ
relatedEntity* RelatedEntity[] . .
could have an impact on the Identif
normal operation.
A list of Related Issue Incide
, , relationships. Represents Relate
relatedIssue IssueRelationship[] . . .
relationships to other Trouble Ticket
Tickets and Incidents. Incide
The severity or impact (ITIL) of Incid
ncide
severity* TroubleTicketSeverityType the Incident as evaluated by the S .
everi
Seller.
The date when the situation was
situationStartDate* date-time first identified, for example via
error logs.
)) Incide
status* IncidentStatusType The current status of the Incident Stat
ate
The status change history thatis Not
statusChange IncidentStatusChange][] associated to the Incident. repres
Populated by the Seller. in ME

7.2.2.2. Type Incident_Find

Description: This class represents a single list item for the response of 1istincidgent Operation.

Name Type Description MEF 113
The date the Incident Incident
closedDate date-time status was set to closed Closed
by the Seller Date
i Incident
)) The date on which the .
creationDate* date-time) Creation
Incident was created Dat
ate

69/ 86

Name Type Description MEF 113
_) Description of the o
description* string . Description
Incident
The date provided by Incident
. the Seller to indicate Expected
expectedClosedDate date-time])
when the Incident is Closed
expected to be closed. Date
Not
. Hyperlink, a reference represented
href string)))
to the Incident entity in MEF
113
Unique (within the)
)) o) Incident
id* string Seller domain) identifier .
) Identifier
for the Incident.
. The type of impact Incident
impact* MEFObservedlmpactType
observed by the Buyer. Impact
The presumed cause of)
o)] Incident
incidentType* IncidentType the Incident as T
e
evaluated by the Seller. P
The date when the
.) Incident was first Situation
situationStartDate date-time . .
identified, for example Start Date
via error logs.
The priority (ITIL) is
based on the assessment
of the impact and
urgency of how quickly .
o . .) Incident
priority* TroubleTicketPriorityType the Incident should be o
Priority
resolved after
evaluation by the Seller
of the impact of the
Incident.
An entity that is related
to the Incident such as a
) _ service, a product, etc. Product
relatedEntity* RelatedEntity[]) i)
The entity which the Identifier

Incident is associated
with.

70/ 86

Name Type Description MEF 113

The severity or impact .
)))) Incident
severity* TroubleTicketSeverityType (ITIL) of the Incident as .
Severity
evaluated by the Seller.

The current status of the Incident

status™ IncidentStatusType .
Incident State

7.2.2.3. enun IncidentType

Description: Possible values for the type of the Incident:
e maintenance: Any scheduled or non-scheduled maintenance related Incident.
e repair: Any non-scheduled Situation requiring repair by the Seller.

e installation: Any installation related Situation requiring action by the Seller.

Value MEF 113
maintenance MAINTENANCE

repair REPAIR

installation = INSTALLATION

7.2.2.4. enun IncidentStatusType

Description: Possible values for the status of the Incident

status MEF 113 name Description

The Situation described in the Incident was closed by the
closed CLOSED L. .
Seller. This is a terminal state.

created CREATED A new Incident has been created and allocated a unique .

inrogress IN_PROGRESS The Incident is in the process of being handled by the Seller.

7.2.2.5. Type IncidentStatusChange

Description: Holds the status notification reasons and associated date the status changed,
populated by the server

Name Type Description MEF 113

The date and time the status Not represented in

changeDate date-time
changed. MEF 113

71/86

Name

Type

Description

MEF 113

changeReason string

The reason why the status

changed.

Not represented in
MEF 113

status

Not represented in

IncidentStatusType Reached status

7.2.3. Common

MEEF 113

Types described in this subsection are shared among two or more Cantata and Sonata APIs.

7.2.3.1. Type AttachmentValue

Description: Complements the description of an element (for instance a product) through

video, pictures...

Name Type Description MEF 113
. . : Not
locally unique identifier to
. e represented
attachmentld string distinguish items from the .
] in MEF
Attachment list.
113
The name of the person or
) .. Attachment
author* string organization who added the
Author
Attachment.
The actual contents of the
attachment object, if embedded,
content string encoded as base64. Either url or Content
(content and mimeType) attributes
MUST be provided during creation.
. . Attachment
creationDate* date-time The date the Attachment was added. Dat
ate
o) A narrative text describing the o
description string Description
content of the attachment
Attachment mime type such as
mimeType string extension file for video, picture and Mime Type
document
‘ Attachment
name* string The name of the attachment
Name
size MEFByteSize The size of the attachment. Size

72 /86

Name Type Description MEF 113

Indicates if the attachment was Attachment
source™ MEFBuyerSellerType
added by the Buyer or the Seller. Source

URL where the attachment is

. located. Either url or (content and
url string .) URL
mimeType) attributes MUST be

provided during creation.

7.2.3.2. enun DataSizeUnit

Description: The unit of measure in the data size.

Value
BYTES
KBYTES
MBYTES
GBYTES
TBYTES
PBYTES
EBYTES
ZBYTES
YBYTES

7.2.3.3. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Description MEF 113
)) The city that the address)
city*® string . City
is in

Country that the address

country* string . Country

is in

o Not
Additional fields used to
))) represented
geographicSubAddress GeographicSubAddress specify an address, as . MEF
in
detailed as possible. 113

73 /86

Name Type Description MEF 113
]) The locality that the)
locality string o Locality
address is in
Descriptor for a postal
delivery area, used to
. L Postal
postcode string speed and simplify the Cod
ode
delivery of mail (also
known as zip code)
An extension of a postal
code. E.g. the part Postal
postcodeExtension string following the dash in a Code
US urban property Extension
address
)) The State or Province State Or
stateOrProvince string o .
that the address is in Province
] Name of the street or Street
streetName* string
other street type Name
Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
) Street
streetNr string addresses. MEF 79
)) Number
defines it as required
however as in certain
countries it is not used
we make it optional in
API.
Last number in a range of Street
streetNrLast string street numbers allocated ~ Number
to a property Last
Street
) Last street number suffix
streetNrLastSuffix string Number
for a ranged address
Suffix Last
Street
) The first street number
streetNrSuffix string Number
suffix
Suffix
. A modifier denoting a Street
streetSuffix string] o
relative direction Suffix

74 /86

Name Type Description MEF 113
The type of street (e.g.,
alley, avenue, boulevard,
) brae, crescent, drive,
streetType string Street Type

7.2.3.4. Type GeographicSubAddress

highway, lane, terrace,

parade, place, tarn, way,
wharf)

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Description MEF 113
Allows for identification of places L
o . . o Building
buildingName string that require building name as part of N
ame
addressing information
Not
. . .) represented
id string Unique Identifier of the subAddress .
in MEF
113
Used where a level type may be Level
eve
levelNumber string repeated e.g. BASEMENT 1,
Number
BASEMENT 2
) Describes level types within a
levelType string o Level Type
building
"Private streets internal to a)
(] ty) ma Private
roperty (e.g. a universi
privateStreetName string prop rty 8 Y 4 Street
have internal names that are not
) Name
recorded by the land title office
_) Private
)) Private streets numbers internal to a
privateStreetNumber string) Street
private street
Number
Representation of a MEFSubUnit It Not
0
is used for describing subunit within
)) represented
subUnit MEFSubUnit[] a subaddress e.g.BERTH, FLAT, - MEF
in
PIER, SUITE, SHOP, TOWER, 13

7.2.3.5. enun MEFBuyerSeller Type

UNIT, WHARF.

75/ 86

Description: An enumeration with buyer and seller values.

Value MEF 113
buyer BUYER

seller SELLER

7.2.3.6. Type MEFByteSize

Description: A size represented by value and Byte units

Name Type Description MEF 113
amount float Numeric value in a given unit Value
units DataSizeUnit Byte Unit Unit

7.2.3.7. Type MEFGeographicPoint

Description: A MEFGeographicPoint defines a geographic point through coordinates.
Reference: MEF 79 (Sn 8.9.5)

Inherits from:

o RelatedPlaceRefOrValue

Name Type Description MEF 113

The spatial reference system used to determine the
GalRef* siri coordinates (e.g. "WGS84"). The system used and the Spatial
spatialRef* strin
P 8 value of this field are to be agreed during the Reference

onboarding process.

The latitude expressed in the format specified by the

x* string i Latitude
spacialRef"
. The longitude expressed in the format specified by the .
y* string . Longitude
spacialRef"

. The elevation expressed in the format specified by the .
z string . Elevation
spacialRef"

7.2.3.8. Type MEFSubUnit
Description: Allows for sub unit identification

MEF

Name Type Description
a Yp 1pua 13

76/ 86

MEF

Name Type Description
yp p 13
L . . Sub
. . The discriminator used for the subunit, often just a .
subUnitNumber* string . Unit
simple number but may also be a range.
Name
. Sub
i i The type of subunit e.g. BERTH, FLAT, PIER,)
subUnitType* string Unit
SUITE, SHOP, TOWER, UNIT, WHARF. T
ype

7.2.3.9. Type Note

Description: Extra information about a given entity. Only useful in processes involving

human interaction. Not applicable for automated process.

Name Type Description MEF 113
. Note
author* string Author of the note
Author
date* date-time Date of the note Note Date
. e .. Not
Identifier of the note within its containing
]]]] represented
id* string entity (may or may not be globally unique, . MEF
in
depending on provider implementation) 13
Indicates if this Note was added by the Note
source® MEFBuyerSellerType
Buyer or Seller. Source
text* string Text of the note Note Text

7.2.3.10. Type RelatedContactInformation

Description: Contact data for a person or organization that is involved in a given context. It

is specified by the Seller (e.g. Seller Contact Information) or by the Buyer.

Name Type Description MEF 113
. .) Contact email
emailAddress™ string Email address
Address
name* string Name of the contact Contact Name
. Contract Phone
number*® string Phone number

Number

77 /86

Name Type Description MEF 113

Contract Phone

numberExtension string Phone number extension Number
Extension
L . The organization or company Contact
organization string .
that the contact belongs to Organization
Identifies the postal address of
. Contact Postal
postalAddress FieldedAddress the person or office to be
Address

contacted.

A role the party plays in a given ~ Not represented

role* string .
context. in MEF 113

7.2.3.11. Type RelatedEntity

Description: A reference to an entity, where the type of the entity is not known in advance.

Name Type Description MEF 113

. The actual type of the target instance when Not represented
@referredType* string

needed for disambiguation. in MEF 113
‘ . Not represented
href string Reference of the related entity. .
in MEF 113
.) Product
d* string Unique identifier of a related entity. .
Identifier
_ , Not represented
role* string The role of an entity.

in MEF 113

7.2.4. Notification registration

Notification registration and management are done through /nus API endpoint. The below

sections describe data models related to this endpoint.
7.2.4.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

API name MEF 113 name Description

78 /86

API name

MEF 113 name

Description

troubleTicketAttributeValueChangeEvent

TICKET _UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a

troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent

TICKET STATE CHANGE

A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent

TICKET _INFO REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status 1S pending. NoOte:
The Buyer uses the Patch
operation to provide more

information for a Ticket.

troubleTicketStatusChangeEvent

TICKET RESOLVED

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status 1s
resolved. Note: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen

operations

incidentCreateEvent

INCIDENT CREATE

A new Incident was created
by the Seller.

incidentAttributeValueChangeEvent

INCIDENT UPDATE

An open Incident was updated
by the Seller.

incidentStatusChangeEvent

Name Type Description

INCIDENT _STATE CHANGE

79/ 86

An Incident status was
changed by the Seller.

Name Type Description

This callback value must be set to *host™* property from Buyer Notification API (tr
This property is appended with the base path and notification resource path specifie
callback* string which notification is sent. E.g. for "callback": "http://buyer.com/listenerEndpoint",
will be sent to:
“http://buyer.com/listenerEndpoint/mefApi/sonata/troubleTicketNotification/v2/list

This attribute is used to define to which type of events to register to. Example: "que
troubleTicketStatusChangeEvent". To subscribe for more than one event type, put t
query string eventType=troubleTicketStatusChangeEvent,troubleTicketResolvedEvent'. The pc
'"TroubleTicketEventType' in troubleTicketNotification.api.yaml. An empty query is

ending in subscription for all event types.

7.2.4.2. Type EventSubscription

Description: Sets the communication endpoint address the service instance must use to

deliver notification information

Name Type Description MEF 113
The value provided by the Buyer in . .
) . o .))) Notification Target
callback®* string ‘EventSubscriptionlnput’ during notification .
i i Information
registration
. i An identifier of the event subscription assigned Not represented in
1 strin
8 by the Seller when a resource is created. MEF 113
. This attribute is used to define notification List of Notification
query string . .) .
registration constraints. Event Types, Action

7.3. Notification API Data model

Figure 20 presents the Trouble Ticket Management Notification data model.

80/ 86

. TroubleTicketEventType
@ Event @ IncidentEventType @

troubleTicket Attribute/alueChangeEvent

incidentCreateEvent
incidentAttribute’alueChangeEvent
incidertStatusChangeEvent

eventld*: string
eventTime*: date-time

AN

© IncidentEvent © TroubleTicketEvent

troubleTicketinformationReqguiredEvent
troubleTicketResolvedEvert
troubleTicketStatusChangeEvent

evertType*: IncidentEventType eventType*: TroubleTicketEvertType
event event

1 1

Y h 4
©IncidentEventPayl0ad ©TrnubleTicketEventPayluad
sellerld: string sellerld: string
id*: string id*: string
href: string href: string
buyerld: string buyerld: string

Figure 20. Trouble Ticket Management Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Description MEF 113

eventld* string Id of the event Not represented in MEF 113

eventTime* date-time Datetime when the event occurred Not represented in MEF 113

7.3.2. Type TroubleTicketEvent

Description:

Inherits from:

e Event
Name Type Description MEF 113
_ Indicates the type of the Notification
eventType* TroubleTicketEventType
event. Type
. Not
, A reference to the object that .
event* TroubleTicketEventPayload | . . represented in
1s source of the notification. MEF 113

7.3.3. enun TroubleTicketEventType

Description: Type of the Trouble Ticket event.
81/86

API name

MEF 113 name

Description

troubleTicketAttributeValueChangeEvent

TICKET _UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a

troubleTicketAttributevValueChangeEvent

troubleTicketInformationRequiredEvent

TICKET STATE CHANGE

A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent

TICKET INFO REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status 1S pending. Note:
The Buyer uses the Patch
operation to provide more

information for a Ticket.

troubleTicketStatusChangeEvent

TICKET _RESOLVED

7.3.4. Type TroubleTicketEventPayload

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status is
resolved. Note: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen

operations

Description: The identifier of the Trouble Ticket being subject of this event.

Name Type Description MEF 113
The unique identifier of the organization that is acting as
sellerld string the Seller. MUST be specified in the request only when Seller

requester entity represents more than one Seller.

82 /86

Name Type Description MEF 113
Not
.) .)) represented
id* string ID of the Trouble Ticket attributed by quoting system .
in MEF
113
Not
.)) represented
href string Hyperlink to access the Trouble Ticket .
in MEF
113
The unique identifier of the organization that is acting as
buyerld string the a Buyer. MUST be specified in the request only when Buyer
the responding represents more than one Buyer.
7.3.5. Type IncidentEvent
Description:
Inherits from:
e Event
Name Type Description MEF 113
. . Notification
eventType* IncidentEventType Indicates the type of the event. T
ype

event™® IncidentEventPayload

A reference to the object that is Not represented

7.3.6. Type IncidentEventPayload

Description: The identifier of the Incident being subject of this event.

source of the notification. in MEF 113

Name Type Description MEF 113
The unique identifier of the organization that is acting as
sellerld string the Seller. MUST be specified in the request only when Seller
requester entity represents more than one Seller.
Not
))))) represented
d* string ID of the Incident attributed by quoting system .
in MEF
113

83 /86

Name Type Description

MEF 113

href string Hyperlink to access the Incident

Not
represented
in MEF
113

The unique identifier of the organization that is acting as
buyerld string the a Buyer. MUST be specified in the request only when

the responding represents more than one Buyer.

7.3.7. enn IncidentEventType

Description: Type of the Incident event.

API name MEF 113 name Description

Buyer

A new Incident was created

incidentCreateEvent INCIDENT_CREATE

by the Seller.

An open Incident was
updated by the Seller.

incidentAttributeValueChangeEvent INCIDENT_UPDATE

An Incident status was

incidentStatusChangeEvent INCIDENT_STATE_CHANGE

changed by the Seller.

84 /86

8.

References

[OAS-v3] Open API 3.0, February 2020

[MEF55.1] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture
and Framework, February 2021

[MEF79] MEF 79, Address, Service Site, and Product Offering Qualification
Management, Requirements and Use Cases, November 2019

[MEF80] MEF 80, Quote Management Requirements and Use Cases, July 2021
[MEF113] MEF 113 Trouble Ticketing Business Requirements and Use Cases, July
2022

[MEF128] MEF 128, LSO API Security Profile, July 2022

[MEF137] MEF 137 LSO Cantata and LSO Sonata Appointment Management API -
Developer Guide, October 2022

[REST] Chapter 5: Representational State Transfer (REST) Fielding, Roy Thomas,
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
[RFC2119] REC 2119, Key words for use in RFCs to Indicate Requirement Levels, by
S. Bradner, March 1997

[RFC3986] RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, January
2005

[RFC8174] RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words, by B. Leiba, May 2017, Copyright (¢) 2017 IETF Trust and the persons
identified as the document authors. All rights reserved.

[TMF621] TMF 621, Trouble Ticket API REST Specification R19.0.1, November 2019
[TMF630] TMF 630 TMF630 API Design Guidelines 4.2.0

85/ 86

http://spec.openapis.org/oas/v3.0.3.html
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
http://www.mef.net/resources/technical-specifications/download?id=129&fileid=file1
https://www.mef.net/wp-content/uploads/MEF-80.pdf
https://www.mef.net/wp-content/uploads/MEF-113.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://www.mef.net/wp-content/uploads/MEF-137.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://www.tmforum.org/resources/specification/tmf621-trouble-ticket-management-api-rest-specification-r19-0-0/
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/

Appendix A Acknowledgments

Mike BENCHECK
Michat LACZYNSKI
Jack PUGACZEWSKI
Patrick ROOSEN

Karthik SETHURAMAN

86 / 86

