N =
MEF

Working Draft
MEF W99 v0.91
LSO Service Ordering Management API -
Developer Guide

This draft represents MEF work in progress and is subject to change.

January 2023

EXPORT CONTROL: This document contains technical data. The download, export,
re-export or disclosure of the technical data contained in this document may be
restricted by applicable U.S. or foreign export laws, regulations and rules and/or
applicable U.S. or foreign sanctions (" Export Control Laws or Sanctions"). You agree
that you are solely responsible for determining whether any Export Control Laws or
Sanctions may apply to your download, export, reexport or disclosure of this
document, and for obtaining (if available) any required U.S. or foreign export or

reexport licenses and/or other required authorizations.

1/80



Disclaimer
© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any
recipient and is believed to be accurate as of its publication date. Such information is subject
to change without notice and MEF Forum (MEF) is not responsible for any errors. MEF
does not assume responsibility to update or correct any information in this publication. No
representation or warranty, expressed or implied, is made by MEF concerning the
completeness, accuracy, or applicability of any information contained herein and no liability

of any kind shall be assumed by MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the
recipient or user of this document. MEF is not responsible or liable for any modifications to

this document made by any other party.

The receipt or any use of this document or its contents does not in any way create, by

implication or otherwise:

* (a) any express or implied license or right to or under any patent, copyright, trademark
or trade secret rights held or claimed by any MEF member which are or may be

associated with the ideas, techniques, concepts or expressions contained herein; nor

¢ (b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or

concepts contained herein; nor

¢ (c) any form of relationship between any MEF member and the recipient or user of this

document.

Implementation or use of specific MEF standards, specifications or recommendations will
be voluntary, and no Member shall be obliged to implement them by virtue of participation
in MEF Forum. MEF is a non-profit international organization to enable the development
and worldwide adoption of agile, assured and orchestrated network services. MEF does not,

expressly or otherwise, endorse or promote any specific products or services.
Copyright

© MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall
contain the following statement: "Reproduced with permission of MEF Forum." No user of

this document is authorized to modify any of the information contained herein.

2/80



Table of Contents

 List of Contributing Members
1. Abstract

2. Terminology and Abbreviations

3. Compliance Levels

4. Introduction
o 4.1. Description
o 4.2. Conventions in the Document
o 4.3. Relation to Other Documents
o 4.4. Approach
o 4.5. High-Level Flow
5. API Description
o 5.1. High-level Use Cases
5.2. API Endpoints and Operations Summary
» 5.2.1. SOF Service Ordering API Endpoints
» 5.2.2. BUS Service Ordering API Endpoints

5.3. Integration of Service Specifications into Service Order Management API

o

o

[}

5.4. Sample Service Specification

o

5.5. Model structure and validation

o 5.6. Security Considerations
e 6. API Interactions and Flows

o 6.1. Use case 1: Create Service Order
» 6.1.1. Interaction flow

» 6.1.2. Create Service Order Request

6.1.3. Create Service Order Response
6.1.4. Use Case la: Service Order Item to Add Service
6.1.5. Use case 1b: Service Order Item to Modify Existing Service

6.1.6. Use case 1c: Service Order Item to Delete Existing Service

6.1.7. Service Order and Service Order Items State Machine

6.1.8. Specifying Place Details

» 6.1.8.1. Fielded Address
6.1.8.2. Formatted Address
6.1.8.3. Geographic Point
6.1.8.4. Geographic Address Label
6.1.8.5. Geographic Site Reference

» 6.1.8.6. Geographic Address Reference
6.2. Use Case 2: Retrieve List of Service Orders
6.3. Use Case 3: Retrieve Service Order by Service Order Identifier

O

[}

[}

6.4. Use case 4: Register for Notifications
6.5. Use case 5: Send Notification
6.6. Service Lifecycle

O

O

3/80



e 7. API Details
o 7.1. API patterns
» 7.1.1. Indicating errors
= 7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enun Error400Code
7.1.1.4. Type Error401
7.1.1.5. enun Error401Code
7.1.1.6. Type Error403
7.1.1.7. enun Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error422
7.1.1.10. enum Error422Code
= 7.1.1.11. Type Error500
o 7.2. Management API Data model
s 7.2.1. ServiceOrder
7.2.1.1 Type ServiceOrder Common

7.2.1.2. Type ServiceOrder Create
7.2.1.3. Type ServiceOrder
7.2.1.4. enum ServiceOrderStateType
7.2.1.5. Type ServiceOrderRef
7.2.1.6. Type ServiceOrderRelationship
s 7.2.2. Service Order Item

» 7.2.2.1 Type ServiceOrderltem Common

7.2.2.2. Type ServiceOrderltem_Create
7.2.2.3. Type ServiceOrderltem

7.2.2.4. enun ServiceActionType
7.2.2.5. Type ServiceOrderltemRef
7.2.2.6. Type ServiceOrderltemRelationship

» 7.2.3. Service representation

s 7.2.3.1. Type ServiceValue

7.2.3.2. Type MefServiceConfiguration

7.2.3.3. Type ServiceRelationship

7.2.3.3. enun ServiceStateType

7.2.3.3. Type ServiceRef

= 7.2.4. Place representation

7.2.4.1. Type RelatedPlaceRefOrValue
7.2.4.2. Type FieldedAddress

7.2.4.3. Type FieldedAddressValue
7.2.4.4. Type FormattedAddress
7.2.4.5. Type GeographicPoint

7.2.4.6. Type GeographicAddressLabel

4/80



7.2.4.7. Type GeographicSubAddress
7.2.4.8. Type GeographicSubAddressUnit
7.2.4.9. Type GeographicAddressRef
7.2.4.10. Type GeographicSiteRef

= 7.2.5. Notification registration

» 7.2.5.1. Type EventSubscriptionlnput

» 7.2.5.2. Type EventSubscription
= 7.2.6. Common
7.2.6.1. Type OrderCoordinatedAction
7.2.6.2. Type OrderltemCoordinatedAction

7.2.6.2. enun OrderltemCoordinationDependencyType
7.2.6.11. Type Note BusSof
7.2.6.13. Type RelatedContactInformation
7.2.6.14. Type TerminationError
® 7.2.6.15. enun TimeUnit
o 7.3. Notification API Data model
= 7.3.1. Type Event

» 7.3.2. Type ServiceOrderEvent
» 7.3.3. Type ServiceOrderEventPayload
» 7.3.4. enun ServiceOrderEventType

e 8. References

5/80



List of Contributing Members

The following members of the MEF participated in the development of this document and

have requested to be included in this list.
Member

Table 1. Contributing Members

6/80



1. Abstract

This standard is intended to assist the implementation of the Application Programming
Interfaces (APIs) for the Service Provisioning function of the Service Orchestration
Functionality at the LSO Legato Interface Reference Point. The Legato Interface Reference
Point is defined in the MEF 55.1 [MEF55.1] at the interface between the Business

Application Systems layer and Service Orchestration Functionality layer.

This Standard normatively incorporates the following OpenAPI 3.0 definitions by reference
as if they were part of this document, from the MEF-GIT GitHub repository working draft

branch:

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK

® serviceApi\order\serviceOrderingManagement.api.yaml

® serviceApilorder\serviceOrderingNotification.api.yaml

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions to terms are found in other documents. In these cases, the third column is used to

provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the following documents are included in this document by

reference, and are not repeated in the tables below.

e MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework February 2021 [MEF 55.1]

Term Definition Source

The endpoint of a communication channel (the

. complete URL of an API Resource) to which the rapidapi.com

API Endpoint ) )

HTTP-REST requests are addressed in order to This document

operate on the API Resource

A REST Resource. In REST, the primary data

representation is called Resource. In this document,  restfulapi.net
API Resource ) )

API Resource is defined as a OAS SchemaObject This document

with specified API Endpoints
Business The Service Provider functionality supporting

o . o MEF 55.1
Applications ~ Business Management Layer functionality

7180


https://github.com/MEF-GIT/MEF-LSO-Legato-SDK
https://rapidapi.com/blog/api-glossary/endpoint/
https://restfulapi.net/resource-naming/

Term Definition Source

OAS An API description document in the OpenAPI

openapis.org

Document specification format.

The OpenAPI 3.0 Specification, formerly known as

OpenAPI the Swagger specification is an API description spec.openapis.org
format for REST APIs.
) An interaction between the BUS and SOF, potentially )
Operation This document

involving multiple back and forth transactions.

The construct that allows the definition of input and

SchemaObject output data types. These types can represent object spec.openapis.org

classes, as well as primitives and arrays. specification

The set of service management layer functionality
supporting an agile framework to streamline and
automate the service lifecycle in a sustainable fashion

Service for coordinated management supporting design,

Orchestration  fulfillment, control, testing, problem management, MEF 55.1

Functionality  quality management, usage measurements, security
management, analytics, and policy-based
management capabilities providing coordinated end-

to-end management and control of Services

Table 2. Terminology

Term Definition Source
APL Application Programming Interface. In this document, APl is used  This
synonymously with REST APIL document
BUS Business Applications MEF 55.1
) This
IRP  Interface Reference Point
document

OAS OpenAPI Specification

openapis.org

SOF  Service Orchestration Functionality

Table 3. Abbreviations

81/80

MEEF 55.1


https://www.openapis.org/faq/style-guide
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3#schema-object
https://www.openapis.org/faq/style-guide

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC 2119], RFC 8174 [RFC8&174]) when, and only when, they appear in all

capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that
MUST be followed if the condition(s) following the "<" have been met. For example, "
[CR1]<[D38]" indicates that Conditional Mandatory Requirement 1 must be followed if
Desirable Requirement 38 has been met. A paragraph preceded by [CDb]< specifies a
Conditional Desirable Requirement that SHOULD be followed if the condition(s) following
the "<" have been met. A paragraph preceded by **[COc]<**specifies a Conditional
Optional Requirement that MAY be followed if the condition(s) following the "<" have

been met.

9/80



4. Introduction

This standard specification document describes the Application Programming Interface
(AP]) for Service Order Management functionality of the LSO Legato Interface Reference
Point (IRP) as defined in the MEF 55.1 Lifecycle Service Orchestration (LSO): Reference
Architecture and Framework [MEF55.1]. The LSO Reference Architecture is shown in
Figure 1 with the IRP highlighted.

Customer Domain SP Domain Partner Domain

Business Applications Business Applications
CANTATA ‘SSSQLT;;
Customer Application (CUS:BUS] LEGATO ’ LEGATO
Coordinator (BUS:50F) (BUS:SOF)
Service Orchestration Service Orchestration
ALLEGRO Funcrionality INTERLUDE Funcrionality
: SOF:SOF
(CUS:SOF) PRESTO t ! PRESTO
(SOF:ICM) [SOF:ICM)
Infrastructure Control Infrastructure Control
and Management and Management
ADAGIO ADAGIO
(ICM:ECM) (ICM:ECM)
CUS: Customer Application Coordinator
BUS: Business Applications Element Control and Element Control and
SOF: Service Orchestration Functionality Management = o e Management
ICM: Infrastructure Control and Management ENNI
ECM: Element Control and Management Network Infrastructure Network Infrastructure

Figure 1. The LSO Reference Architecture

4.1. Description

This standard is scoped to cover APIs for following Service Orchestration Functionalities:

¢ Service Ordering and Fulfillment
o Includes Service Configuration & Activation functions
 Service Notification

o Includes Event Subscription/Hub and Listener notification functions

Other Service Orchestration Functionalities not addressed in this standard include (but not
limited to):

 Service Inventory Management

¢ Service Catalog Management

¢ Service Qualification

* Service Activation Testing

 Service Problem Management

¢ Service Quality Management

¢ Service Usage measurements and Reporting (in support of billing)

e License Management

10/80



This document primarily supports the requirements defined in section 8.2 (Order Fulfillment
and Service Control) of MEF 55.1, LSO Reference Architecture for interactions over the
Legato interface within a single operator. Both the Business Applications (BUS) and Service
Orchestration Functionality (SOF) systems use the information contained within this

document.

This standard is intended to support the design of API implementations that enable inter-

operable SOF operations (in scope of this standard) across the Legato IRP.

This standard is based on TMF Open API (v4.1.0) for Service Ordering (TMF 641)
TMF641.

4.2. Conventions in the Document

e Code samples are formatted using code blocks. When notation << some text »> is used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.

e Model definitions are formatted as in-line code (e.g. serviceorder).

e In UML diagrams the default cardinality of associations is ¢..1. Other cardinality
markers are compliant with the UML standard.

* In the API details tables and UML diagrams required attributes are marked with a - next
to their names.

e In UML sequence diagrams ({variabie}} notation is used to indicate a variable to be

substituted with a correct value.

4.3. Relation to Other Documents

The API definition builds on TMF641 Service Order Management API REST Specification
v4.1.0 [TMF641]. Service Order Use Cases must support the use of any of MEF service
specifications as payload, in particular those defined in:

e LSO Legato Service Specification - SD-WAN Schema Guide in MEF W100 [MEF
W100].

e LSO Legato Service Specification - Carrier Ethernet Schema Guide in MEF W101
[MEF W101].

e LSO Legato Service Specification - IP/IP-VPN Schema Guide in MEF W102 [MEF
W102].

4.4. Approach

As presented in Figure 2. the Legato API frameworks consist of three structural

components:

11/80



e Generic API framework
e Service-independent information (Function-specific information and Function-specific
operations)

 Service-specific information (MEF service specification data model)

" eq.
Wire/transport Protocol *+ REST/OpenAPls
RESTConf/Yang or NETCONF/Yang

APl Framework . :
Encoding Scheme +  TOSCA Templates
Security Mechanisms

e.g. TMF, ONAP, ONF TAPI or MEF APIs for:
Product/service ordering,

. +  Product/service inventory

- Serviceability

Notification Mechanisms
Product/Service-Independent Funcrion-specific Information

|nf°rma:i°n —
Function-specific Operations

MEF 3.0 Services, e.g.:
Product/Service-specific +  SD-WAN Services
Information, based on: ' +  CEServices [EP-LINE, EVP-LINE, A -
‘ Data Model ( : SAccess
* MEF Service Model ELINE, Transit-ELINE,...),
*+ MEF Business Model + IP Services
* ME Resource Model
+ Optical Transport Services

Figure 2. Legato API Structure

The essential concept behind the framework is to decouple the common structure,
information, and operations from the specific service information content.

Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Legato APIs.

Secondly, the service-independent information of the framework focuses on a model of a
particular Legato functionality and is agnostic to any of the service specifications. For
example, this standard is describing the Service Order model and operations that allow
ordering of any service that is aligned with either MEF or custom service specifications.
Finally, the service-specific information part of the framework focuses on MEF service
specifications that define business-relevant attributes and requirements for trading MEF

subscriber and MEF operator services.

This Developer Guide is not defining MEF service specifications but can be used in
combination with any service specifications defined by or compliant with MEF. Examples
of MEF Service Model (MSM) schema include:

e MEF W100: SD-WAN Services based on MEF 70 [MEF70]

e MEF W101: Carrier Ethernet services based on MEF 10.4 [MEF10.4] and MEF 26.2
[MEF26.2]

e MEF W102: IP Services based on MEF 61.1 [MEF61.1] and MEF 61.1.1 [MEF61.1.1]

Figure 3 presents the relations between the Legato API components and the Service Model.

A Service Order contains one or more Service Order Items. Each Service Order Item is an

intent of action on a given Service (add, modify or delete). A Service references Service

Specification to identify the Service Type. The Service specification points to the schema of

the Service, as provided by (but not limited to) MEF Standard. The Service also has the
12/80



mefserviceconfiguration attribute, which provides an instance of the configuration of a given

Service (attributes of MEF Service model populated with desired values)

Service

Specification

Generic Legato Service Provisioning Model

<references to>

<instgnces of>

~
.

Service Order .
Service
Item
MEF Service
Configuration
—

MEF Service Model (MSM)

Carrier Ethernet Schema

WS

SD-WAN Schema IP Schema

Figure 3. Legato and MSM Schema

4.5. High-Level Flow

The Legato Service Catalog, Service Order, Service Inventory, and Service Notification

APIs in essence allow the BUS to request SOF to configure and activate one or more

services as part of an order fulfillment process. Figure 4 presents a high-level flow of use of

all of the above-mentioned APIs.

13/80



E2E Service Ordering Flow

AN

| L
BUS | SOF:ServiceCatalog ” ‘ SOF:ServiceOrdering U SOF:Servicelnventory Hub.

registerListener (SenviceCrderNotification)

' | i I
registerListener (SeniceMaotification)

ProductOrder

seniceSpecificationFind _ ! ! ' I
—_— I | |

List. ServiceSpecification

i I I I
map ProductSpec-to-SeniceSpec p | | | i
I I I I

populate "".‘ | | | i
SeniceOrderConfiguration X I I I I

|..SeniceCrderttermConfiguration .‘-"
|..SewiceConfiguration |

seniceOrderCreate (Sem:ebrderCnnﬂguratmn)
! ]
<<create>> Yy
A4 ! '
| Sewicqorder ' H
Response (ServiceOrder) i | ! |
onSchedule

B

processOrder
I I
I I
loop ) [List.Orderttem] |
| | i processOrdertem | |
I I I I I
i i i i
| opt [action.add] !
! c<creates> ') !
I I I I At I
! ! | ! service !
| opt [action.add | action.modify]
I I I | |
! ! ! configureService (stats, properties) || state: designedlreserved|inactivelactivelterminated Iﬁ
! configureResources
| | i | createEvent | changeEvent _ |
|
notifyListeners (serviceCreateEvent | serviceStateChangeEvent) ' | | ‘
seniceGet ! ! ! | !
! retrieve i
I I I
Response (Semice) !
opt [action.delete] | !
| | | retire|cancel | | |
I I I T T I
| | i changeEvent | ! |
| notifyListeners (sevice OrderltemStateChangeEvent) | | ! | ‘
| | | | T |
changeEvent

notifyListeners (senviceOrderStateChangeEvent) ! | N | | ‘

seniceOrderGet ! ! | ' ! |

retrieve

\ | | | I

Response (ServiceOrder) | i i | i
\

BUS ) ServiceCrder - Service Hub
% SOF:ServiceCatalog || | SOF:ServiceOrdering o~ SOF:Servicelnventory Py o~

o L L

Figure 4. High-Level Flow
The following steps describe the high-level flow:

e The BUS system registers for notifications.

e As part of the ordering flow, the BUS system receives the product order (through
Cantata or Sonata) which triggers the fulfillment processes in the BUS system.

e The BUS system first queries the Service Catalog to retrieve the servicespecifications
supported by the SOF
Notel: Service Catalog and the process of mapping and decomposing a product order

to identify appropriate servicespecifications is out of scope for this standard. Note2: The

14 /80



mechanisms to design, construct and populate the servicespecifications into SOF Service

Catalog is out of scope for this standard.

[e]

Each specific instance of a servicespecification (retrieved from the Service Catalog)
minimally contains a reference to target service schema. A Service schema describes
the set of properties that characterize that service and are exchanged over Legato
IRP.

e During the service configuration and activation phase, the BUS system uses the Service

Order API to instantiate the service utilizing the servicespecifications (retrieved from the

Service Catalog).

O

O

The BUS achieves this by creating a serviceorder which contains a one or more
ServiceOrderItems.

Each serviceordertten Carries SOMe serviceconfiguration data and the type of operation
(ada/modify/detete) to be performed (instructions to SOF).

The SOF utilizes service schema referenced in the servicespecification to validate the
serviceconfiguration data passed in by the BUS.

The serviceorder / serviceorderiten is processed by the SOF as per the state transition
rules described in 6.1.7. Service Order and Service Order Items State Machine
The SOF reports the serviceorder and serviceorderten State changes

The SOF performs the actions (ada/nodify/detete) specified in a serviceorderrten On the
specified target service instance in the Service Inventory as per the state transition
rules described in 6.6. Service Lifecycle

The SOF reports the service instance state changes

e The BUS system uses the same Service Order API to create new service instances as well

as update existing service instance's properties or trigger state transitions, and delete

existing service instance.

15/80



5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it gives
an explanation of the design pattern that is used to combine service-agnostic and service-
specific parts of API payloads. Finally, payload validation and API security aspects are

discussed.

5.1. High-level Use Cases

Figure 5. presents a high-level use case diagram. It aims to help understand the endpoint

mapping. Use cases are described extensively in chapter 6

(" 1: Create Service Order ) . T~
/ ~— = 1a: Service Order ltem to Add New Service

BUS

(5. Send Notffications

SOF

Figure 5. Use cases

5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Ordering API Endpoints

Base URL: https://{{serverBase}}:{{port}}{{?/sof_prefix}}/mefApi/legato/serviceOrderingManagement/v5/

The following API Endpoints are used by BUS to create and query for serviceorder instances
and to subscribe/unsubscribe to serviceorder notifications. The endpoints and corresponding

data model are defined in serviceApi/order/serviceOrderingManagement.api.yaml

16/80




Use Case

API Endpoint Description )
mapping
A request initiated by the BUS to create new service
instances as well as update service instance's UC 1: Create

POST /serviceOrder

properties or trigger their state transitions and/or

delete existing service instance.

Service Order

GET /serviceOrder

A request initiated by the BUS to retrieve a list of
serviceorders from the service order management
system in SOF, that match the filter criteria provided

as query parameters

UC 2: Retrieve
List of Service
Orders

GET

A request initiated by the BUS to retrieve a specific

serviceorder from the service order management system

UC 3: Retrieve

Service Order

/serviceOrder/{{id}} . ) by Service
in SOF, that match the i« provided as patn parameter )
Order Identifier
A request initiated by the BUS to instruct the SOF to  UC 4: Register
POST /hub

send notification

for Notifications

GET /hub/{{id}}

A request initiated by the BUS to retrieve a specific
Eventsubscription from the service order management
system in SOF, that matches the provided i+ provided

as path parameter

UC 4: Register

for Notifications

DELETE /hub/{{id}}

A request initiated by the BUS to instruct the SOF to

stop sending notifications

Table 4. SOF Service Ordering API Endpoints

[R1] SOF MUST support all API endpoints listed in Table 4.

5.2.2. BUS Service Ordering API Endpoints

UC 4: Register

for Notifications

Base URL: https://{{serverBase}}:{{port}}{{?/bus_prefix}}/mefApi/legato/serviceOrderingNotification/v5/

The following API Endpoints are used by SOF to post notifications to registered BUS

listeners. The endpoints and corresponding data model are defined in

serviceApi/order/serviceOrderingNotification.api.yaml

. L. Use Case
API Endpoint Description .
mapping
A request initiated by the SOF to
] i 5. Send
POST /listener/serviceOrderCreateEvent notlfy BUS on serviceorder Instance . .
Notifications

creation

171/80



Use Case

API Endpoint Description .
mapping
A request initiated by the SOF to
POST notify BUS that additional 5. Send
/listener/serviceOrderInformationRequiredevent —1NfOrmation is required for given Notifications
Serviceorder INStaNce
A request initiated by the SOF to
] ) 5. Send
POST /listener/serviceOrderStateChangeEvent notlfy BUS on serviceorder instance . .
Notifications
state change
A request initiated by the SOF to
POST . 5. Send
nOtlfy BUS on serviceorderrten . .
/listener/serviceOrderItemStateChangeEvent Notifications

instance state change

Table 5. BUS Service Ordering API Endpoints
[O1] The BUS MAY support API endpoints listed in Table 5.
[O2] The BUS MAY register to receive service notifications.

[R2] The SOF MUST support sending notification to API endpoints listed in Table 5 to
registered BUS.

5.3. Integration of Service Specifications into Service Order

Management API

Service specifications are defined using JsonSchema (draft 7) format JSON Schema draft 7

and are integrated into the serviceorder using the TMF extension pattern.

The extension hosting type in the API data model is wefserviceconfiguration. The atype attribute of
that type must be set to a value that uniquely identifies the service specification. A unique
identifier for MEF standard service specifications is in URN format and is assigned by
MEF. This identifier is provided as root schema si4¢ and in service specification
documentation. Use of non-MEF standard service definitions is allowed. In such a case the

schema identifier must be agreed upon between the BUS and the SOF.

The example below shows a header of a Service Specification schema, which is describing

the 1P Uni, where "$id": urn:mef:lso:spec:legato:ip-uni:ve.0.1:all 1s the above-mentioned URN:

"$schema": http://json-schema.org/draft-07/schema#
"$id": $id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all
title: MEF LSO Legato - IP UNI Specification

Service specifications are provided as Json schemas without the mefserviceconfiguration context.

18/80



Service-specific attributes are introduced via the servicevaiue (defined by the BUS). This
entlty has the serviceConfiguration attribute of type MefServiceConfiguration which is used as an

extension point for service-specific attributes.

Implementations might choose to integrate selected service specifications to data model
during development. In such a case an integrated data model is built and service
specifications are in an inheritance relationship with wefserviceconfiguration as described in the
OAS specification. This pattern is called Static Binding. The SDK is additionally shipped
with a set of API definitions that statically bind all service-related APIs (POQ, Quote,
Order, Inventory) with all corresponding service specifications available in the release. The
snippets below present an example of a static binding of the envelope API with several MEF

service specifications, from both vefserviceconfiguration and service specification point of view:

MefServiceConfiguration:
description:
MefServiceConfiguration is used as an extension point for MEF-specific
service payload. The “@type’ attribute is used as a discriminator
discriminator:
mapping:
urn:mef:lso:spec:legato:ip-enni:v0@.0.1:all: '#/components/schemas/IpEnni’
urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all: '#/components/schemas/IpvcEndpoint’
urn:mef:lso:spec:legato:ip-uni:v@.0.1:all: '#/components/schemas/IpUni’
urn:mef:lso:spec:legato:ethernet-uni-access-link-trunk:0.0.1:all:
'#/components/schemas/EthernetUniAccessLinkTrunk"’
urn:mef:1lso:spec:legato:ip-uni-access-1ink:0.0.1:all: '#/components/schemas/IpUniAccessLink’
urn:mef:lso:spec:legato:ipvc:v0.0.1:all: '#/components/schemas/Ipvc’
urn:mef:1lso:spec:legato:ip-uni-access-1link-trunk.@.1:all: '#/components/schemas/IpUniAccessLinkTrunk"'
urn:mef:1lso:spec:legato:ip-enni-link:v@.0.1:all: '#/components/schemas/IpEnnilLink’
propertyName: '@type’
properties:
‘@type’:
description:
The name of the type, defined in the JSON schema specified above, for
the service that is the subject of the Request. The named type must be
a subclass of MefServiceConfiguration.
type: string

IpvcEndpoint:
allof:
- $ref: '#/components/schemas/MefServiceConfiguration'
- description:
'An IPVC End Point is a logical entity at an EI, to which a subset of
packets that traverse the EI is mapped. Reference MEF 61.1 Section 7.4
IP Virtual Connections and IPVC End Points.'

Alternatively, implementations might choose not to build an integrated model and choose a
different mechanism allowing runtime validation of service-specific fragments of the
payload. The system can validate a given service against a new schema without

redeployment. This pattern is called Dynamic Binding.

Regardless of chosen implementation pattern, the HTTP payload is exactly the same. Both

implementation approaches must conform to the requirements specified below.

[R3] refserviceconfiguration type is an extension point that MUST be used to integrate service
specifications' properties into a request/response payload.

19/80



[R4] The @type property of MefServiceConfiguration MUST be used to Specify the type of the

extending entity.

[RS5] Service attributes specified in the payload must conform to the service specification

specified in the @type property.

(©) senvicevalue
id: string
href: string
place: RelatedPlaceRefOrvalue
serviceOffering: Service OfferingRef
serviceRelationship: ServiceRelationship
«.. attributes are skipped .. »
[

seniceConfiguration
0.1

Y
(©) MefsenviceCanfiguration

@type*: string «discriminators

N

© s SenviceSpecifications © « ServiceSpecifications
urn:mef:lso:spec:legato: lpvev0.0.1:all urn:mef:lso:spec:legato:lpvcEndpointv0.0.1:all

«... attributes are skipped ...» «.. attributes are skipped ..»

Figure 6. The Extension Pattern with Sample Service-Specific Extensions

Figure 6 presents two MEF <cservicespecifications>> that represent IPVC and IPVC Endpoint
services. When these services are used as a Service Order payload the etype of
MefServiceConfiguration takes "urn:mef:1lso:spec:legato:ipvc:ve.0.1:all" OI "urn:mef:1lso:spec:legato:ipvc-
endpoint:ve.e.1:a11" value to indicate which service specification should be used to interpret a
set of service-specific attributes included in the payload. An example of a service definition

inside the serviceordertten 1s presented in Section 6.1.4.

The all suffix after the service type name in the URN comes from the approach that the
service schemas may differ depending on the function (POQ, Quote, Order, or Inventory)
they are used with. The value a/l means that one version of the schema is shared by all

functions.

5.4. Sample Service Specification

The Legato SDK contains service specification definitions, from which IPVC and IPVC
End Point are used in the payload samples in this section. The schemas are located in the
SDK package at:

® serviceSchema\ip\ipvc.yaml

® serviceSchema\ip\ipvcEndPoint.yaml

The service specification data model definitions are available as JsonSchema (version drast

7) documents. Figures 7 and 8 depict simplified UML views on these data models in which:

20/80



¢ the mandatory attributes are marked with +,
 the mandatory relations have a cardinality of 1 or 1.+,

e some relations and attributes that are not essential to the understanding of the service
specification model are omitted.

The red color in figures 7 and 8 below highlights the data model of services. Some parts of
the model are skipped for examples clarity. This is denoted by the <<skippeds> text in diagrams
and in json snippets later in the document. Please note that this document uses service
specifications just for the sake of example on how to use the Service Order API together
with the Service payload. The detailed examples of any service specification are not in the
scope of this document.

(®) serviceTopology

® packenzivery (© mersenviceconfiguration
MULTIPOINT STANDARD_ROUTING
ROUTED_MULTIPOINT S AR RTINS | | @type" sting
CLOUD_ACCESS PASED

© Ipve
ipvcldentifier*: string
ipvcTopology*: Service Tapology

® State ® OperationalStateState packetDelivery*™: PacketDelivery
maximumNumberOfipv4Routes: integer

LOCKED ENABLED maximumiNumberOfipveRoutes: integer

UNLOCKED DISABLED dscpPreservation® EnabledDisabled

maximum TransferUnit*: integer
pathMtuDiscovery: EnabledDisabled
fragmentation*: EnabledDisabled
listOfClassOfServiceNames*: string

administrativeState / operationalState |senicelevelSpecification ™ cloud reservedPrefixes

(©) Adminstate (©) operationalstate ©) psis ©pvecioud| (@) IpvaipvePrefixes

state: State state: OperationalStateState «skipped» «skipped» «skipped»

Figure 7. A simplified view of IPVC service specification data model

® state (® aominstatestate

@Mersewmecunﬂguratmn
ENABLED LOCKED -
DISABLED UNLOCKED @typer string
@ IpveEndPaint
@Ex{emallnterface'rype @IpvcEmchlntRo\e identifier: string
ROOT eiType: Externalinterface Type
UNI LEAF role: IpvcEndPointRole
ENNI TRUNK enniServiceMappingldentifier: string

maximumNumberCfipvdRoutes: integer
maximumNumberCfipvERoutes: integer

ﬁh// stscassr \ o

(© operationalstate © Adminstatz (© IpvaipvePrefies (©) IngressClassorsenviceMap (©) EaressClassorsenviceMap (© ipveEpingressBwpEnVelope (©)ipveEpEgressBwpENvelope
state: State state: AdminStateState wskipeeds «SKipeed»

askipeeds ssiipeeds askipeeds

Figure 8. A simplified view of IPVC End Point service specification data model

Service specifications define several service-related and envelope-related requirements. For
example:

e for an IPVC End Point service two mandatory relationships must be specified, one

toward the IPVC (zrunt_enorornt_or_tpvc), and a second towards the IP UNI (connects_to_tpunt)
21/80



for the aqd action.

* in the case of a nodify action, service relationships must have the same value as in the add
action. They must not be changed

e for an IP UNI Access Link Trunk service a place relationship (instaci_rocarron) must be
specified

e in the case of a nodiy action, place relationships must have the same value as in the add

action. They must not be changed

In case, some of these requirements are violated the SOF returns an error response to the
BUS that indicates specific functional errors. These errors are listed in the response body (a

list of errora22 entries) for HTTP 222 response.

()mw

1
IPUNI_ENDPOINT_OF_IPVC
0.

(©)pveEndroint

1
(©) 1puni g PART_OF_IPUNI (@) jpuniaccessLink ., PROVIDED_BY 1_ (@) ipuniAccessLinkTrunk
< 0. K

0.
J{N STALL_LOCATION
1

(©) RelatedPlaceRefOrValue

Figure 9. Example use case configuration

Figure 9 shows a setup of service configuration used by the example. The Advanced Internet

Access is built from 5 services:

IPVC

IPVC End Point

IP UNI

IP UNI Access Link

IP UNI Access Link Trunk

The example assumes a situation, where IP UNI, IP UNI Access Link, and IP UNI Access
Link Trunk are already provisioned and are available in Service Inventory. They are marked
with black lines. The Service Order includes requests to create 2 services: IPVC and IPVC
End Point (marked with red lines). This means there are 2 Service Order Items with
action-add. AS mentioned earlier, there are 2 mandatory relations to be provided with IPVC

End Point. In this case:

® TPUNI_ENDPOINT OF IPVC 1S prOVided with the use of serviceorderttenrelationship as pointing to the

pve being part of the same Service Order,
22/80



e connects_to_teunt 18 provided with the use of servicerelationship s pointing to an rpuni service

that is already provisioned and available in Service Inventory.

5.5. Model structure and validation

The structure of the payloads exchanged via Legato Service API endpoints is defined using:

e OpenAPI version 3.0 for the service-agnostic part of the payload
¢ JsonSchema (draft 7) for the service-specific part of the payload

[R6] Implementations MUST use payloads that conform to these definitions.

[R7] A service specification may define additional consistency rules and requirements that

MUST be respected by implementations. These are defined for:

e required relation type, multiplicity to other items within the same or another Service
Order request

¢ required relation type, multiplicity to entities in the SOF's service inventory

* related contact information roles that are to be defined at the Service Order Item level

* relations to places (locations) and their roles that are to be defined at the order item

level

5.6. Security Considerations

Although the Legato IRP is internal to a Service Provider/Operator business boundary, it is
expected that some minimal security mechanisms are in place for any communication over
this IRP. There must also be authorization mechanisms in place to control what a particular
BUS or SOF is allowed to do and what information may be obtained. However, the
definition of the exact security mechanism and configuration is outside the scope of this
document. The LSO Security mechanisms are defined by MEF 128 LSO API Security
Profiles [MEF128].

23/80



6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It

starts with Table 6 presenting a list and short description of all business use cases then

presents the variants of end-to-end interaction flows, and in the following subchapters

describes the API usage flow and examples for each of the use cases.

Use
Use Case Lo
Case Use Case Description
Name
#
A request initiated by the BUS to order a new service or service
Creat component(s). A Service Order must contain at least one Service
reate
. Servi Order Item (Use Case # 1-a, 1-b, or 1-c) as shown below. A Service
ervice
Ord Order may contain more than one Service Order Item and Service
rder
Order Items within a Service Order are not required to have
relationships between them.
Service
Order Item ) )
1-a Service Order Item adds a new Service.
to Add
Service
Service
Order Item
1-b  to Modify Service Order Item modifies attributes of a specific active Service.
Existing
Service
Service
Order Item
I-c  to Delete Service Order Item disconnects an active Service.
Existing
Service
Retrieve List . i ) .
, A request initiated by the BUS to retrieve a list of Service Orders
2 of Service ) o
that match the provided filter criteria
Orders
Retrieve
Service o ) ] )
Order b A request initiated by the BUS to retrieve the details associated
racr . . . . . .
3 Servi Y with a specific Service Order with the given Service Order
ervice
Identifier.
Order
Identifier

24780



Use

Use Case Lo
Case Use Case Description
Name
#
Register for ) ) )
4 ] , The BUS requests to subscribe to notifications.
Notifications
Send ) ..
5 A notification initiated by the SOF to the BUS

Notification

Table 6. Use cases description

6.1. Use case 1: Create Service Order
This is the initial step for Service Order processing.

6.1.1. Interaction flow

The flow of this use case is very simple and is described in Figure 10.

BUS ‘ SOF ‘

i POST {{haseUr}J/senviceCrder (ServiceOrder_Create)

|
|
2
I hasic validation
.E
|
| assign id
| | state: acknowledged
alt J  [successful inquiry] |
|

. 201 SeniceOrder with {{id}}

[ualilliation or internal problem]

i - arror
€ dxx/Sxx : error response

Figure 10. Use Case 1 - Service Order create request flow

The BUS sends a request with a serviceorder_create type in the body. The SOF performs request
validation, assigns an id, and returns serviceorder type in the response body, with a state set to
acknowledged. From this point, the Service Order is ready for further processing. The BUS can
track the progress of the process either by subscribing for notifications or by periodically

polling the servicecoraer. The two patterns are presented in the following two diagrams.

25/80



BUS ‘ SOF ‘

i POST {{haselUr}/hub with {{callbackUrl}} details !

:1 201 confirmation with {{id}} !

i POST {{haseUrd}senviceCrder (SenviceOrder_Create) !

alt [succesful inquiry] |
1 201 SewviceOrder with {{id}}, "acknowledged” state |

:1 {{callbackUr}listener/seviceCrderCreateEvent ({{id}}) |

i 204 confirmation ‘__:
loo [until Service Order in terminal state] :
:J {{callbackUr}/listener/senviceOrderStateChangeEvent ({id}}) |

| 204 confirmation ol

| GET {{baseUrl}}fseniceOrder{{id}} o

:J 200 SemiceCrder in current state |
[ualida;ion or internal problem] :
I Axx or 5xx error response '

| DELETE {{baseUrl}yhub/id}} X

:J 204 confirmation i

Figure 11. Service Order progress tracking - Notifications

BUS ‘ SOF ‘

I POST {{baseUrl}}seniceOrder (ServiceOrder_Create)

|
|

L

-

! I basic validation
|
|

alt [succesful inquiry] |

1 201 SenviceCrder with {{id}}. "acknowledged” state

|ggE ) [periodically until serviceOrder in completion statlb]
| GET {{baseUrl}seniceOrder/{{id}}

:1 200 SenviceOrder in current state

-~

[walidation or internal problem] |
| |
i dxx ar 5xx error response |
<
o |
T T
| |

Figure 12. Service Order progress tracking - Polling

Note: The context of notifications is not a part of the considered use case itself. It is
presented to show the big picture of end-to-end flow. This applies also to all further use case

flow diagrams with notifications.

so to all further use case flow diagrams with notifications.
6.1.2. Create Service Order Request

Figure 13 presents the most important part of the data model used during the Create Service
Order request (rost /serviceorder) and response. The model of the request message -
26/80



ServiceOrder_Create is a subset of the serviceorder model and contains Only attributes that can (01’
must) be set by the BUS. The SOF then enriches the entity in the response with additional
information.

Note: ServiceOrder_Create and ServiceOrderItem_Create '€ entities used by the BUS to make a request.
serviceorder and serviceordertten are entities used by the SOF to provide a response. The request
entities have a subset of attributes of the response entities. Thus for visibility of these shared

attributes ServiceOrder_Common and ServiceOrderItem_Common have been introduced. Though, these are
not to be used directly in the exchange.

A serviceorderten create defines details of the service(s) being subject of the ordering (in
servicevalue Structure) and allows for the definition of additional information like related

parties (RelatedContactInfor‘mation) or relations to other items (ServiceOr‘der‘ItemRelationship,

SePviceOrderRelationship).

servicevalue allows for the introduction of service-specific properties as the Service Order
payload. The extension mechanism is described in detail in Section 5.3. servicevalve may be
also used to specify relations to places (using specializations of reiatedriaceorvaiue, as described
in Section 6.1.8.) and/or to a service that exists in the SOF's inventory (using

ServiceRelationship).

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

(@© seviceorder_Common

coordinatedAction: OrderCoordinatedAction
description: string

externalld: string
requestedCompletionDate*: date-time
requestedstartDate*; date-time

orderRelationship

© serviceorder
(© serviceoraentem_common hdrif i

id. string ServiceOrderRelationshi
(©) serviceorder_create i sting completionDate: date-time (© servisordeimeiavonsnip
] action”. ServiceActionType expecteaCompletionDate: date-tine relationshipType” string

coordinategAction: OrdertemCoordinatedAction startDate: date-time e —
state”. ServiceOrderstateType
orderDate*. date-time

lsenviceCrdertemRelationship \senice relastedContactinformation |seniceOrdertem  |senical Order

(© senvicevaue
et string n 1
id: string

description: string @ servcordertem (©) senviceorderref
externalld: string

startDate: date-time state*: ServiceOrderStateType

@ senizorsertem_create . (©) serviceordertemRetationship
—_— relationshipType. string

href: string
id” string

state: ServiceStateTyp
serviceType: string
name: string

‘senicaCanfiguration [seniceRelationship \place elatedContactinformation terminationEror

(©) Relateacontactinformation

© otz pussr emallAdaress”. string

athor g (© servieeOrderttemRe ‘© ) ‘© Y ‘ @] OrValue! s (©) TerminationEror
date”. date-time temia” sting | @uype: sting number. string code: Emmora22Code
g string senviceOrderHrer: string | @typer string | | remtonsnipType~ sting | | @scnemaLocation: uri numberExtension: string propertyPath’ string
source*: BusSofType seniceOrderld: string t 1t 1| role®. string string value: string
text: string | postalAddress alue
e role” string

F
Figure 13. Service Order Key Entities

To send a Service Order request the BUS uses the createserviceorder Operation from the API:

posT /serviceorder. FOT clarity, some of the Service Order payload's attributes might be omitted

27180



to improve examples' readability. The serviceorder_create 1S @ simple structure that is common
for all types of requests (add, modify, delete), most of the information is in the

ServiceOrderItem_Create.

service order Create Request

"description”: "Example Service Order",
"externalId": "busOrder-101",
"requestedCompletionDate": "2023-01-28T20:45:23.796Z2",
"requestedStartDate": "2023-01-02T700:00:00.000Z",
"relatedContactInformation™: [
{
"emailAddress": "john.example@example.com",
"name": "John Example",
"number": "12-345-6789",
"numberExtension": "1234",
"organization": "Example Co.",
"role": "serviceOrderContact"
}
1,
"note": [
{
"author": "John Example",
"date": "2022-12-28T20:45:23.796Z",
"id": "note-001",
"source": "bus",
"text": "This is an example text"
}
1,
"serviceOrderItem": [
{
"id": "item-001",
"action": "add",
"service": {
"description": "IP Virtual Connection",
"externalld": "BUS_IPVC-0001",
"serviceType": "Internet Access",
"name": "IPVC",
"state": "feasibilityChecked",
"relatedContactInformation": [
{
"emailAddress": "BUS.ServiceOrderItemContact@example.com",
"name": "BUS Service Order Item Contact",
"number": "+12-345-678-90",
"role": "busServiceOrderItemContact"
}
1,
"serviceConfiguration": {
"@type": "urn:mef:lso:spec:legato:ipvc:ve.0.1:all",
"administrativeState": {
"state": "UNLOCKED"
1,
"operationalState": {
"state": "ENABLED"
1,
"ipvcIdentifier": "IPVC-0000-0001",
"ipvcTopology": "CLOUD_ACCESS",
"packetDelivery": "STANDARD_ROUTING",
"maximumNumberOfIpv4Routes": 1,
"maximumNumberOfIpv6Routes": @,
"dscpPreservation": "ENABLED",
"servicelLevelSpecification": {}, <<skipped>>
"maximumTransferUnit": 1522,
"pathMtuDiscovery": "ENABLED",
"fragmentation": "DISABLED",
"cloud": {}, <<skipped>>
"reservedPrefixes": {}, <<skipped>>
"listOfClassOfServiceNames": ["low"]

"id": "item-@02",
"action": "add",

28780



"serviceOrderItemRelationship": [

{
"orderItem": { << Relationship to IPVC in the same Service Order >>
"itemId": "item-001"
s
"relationshipType™": "IPUNI_ENDPOINT_OF_IPVC"
¥

1,

"service": {
"description”: "IPVC End Point",
"externalId": "BUS_IPVC_END_POINT-0001",
"serviceType": "Internet Access",
"name": "IPVCEndpoint",
"serviceRelationship": [

{ << Relationship to already configured IP UNI in Service Inventory >>
"relationshipType": "CONNECTS_TO_IPUNI",
"service": {

"id": "IP_UNI_0000-0001"
}
¥
]J
"relatedContactInformation”: [
{
"emailAddress": "BUS.ServiceOrderItemContact@example.com",
"name": "BUS Service Order Item Contact",
"number": "+12-345-678-90",
"role": "busServiceOrderItemContact"
}
1
"serviceConfiguration": {
"@type": "urn:mef:lso:spec:legato:ipvc-end-point:ve.0.1:all",
"administrativeState": {
"state": "UNLOCKED"
s
"operationalState": {
"state": "ENABLED"

s

"identifier": "IPVC-EndPoint-0000-0001",

"eiType": "UNI",

"role": "ROOT",

"prefixMapping”: {},

"maximumNumberOfIpv4Routes": 1,

"maximumNumberOfIpv6Routes": @,

"ingressClassOfServiceMap": {}, <<skipped>>

"egressClassOfServiceMap": {}, <<skipped>>

"ingressBwpEnvelope": {}, <<skipped>>

"egressBwpEnvelope": {} <<skipped>>

[RS] The BUS's request MUST contain requestedStartDate, requestedCompletionDate and at least one

serviceOrderItem.

[R9] The BUS's request MUST contain at least one serviceordertten.
[D1] The BUS and SOF SHOULD agree on using specific contact roes.
Note: During the onboarding the SOF may require to provide an additional contact rote.

Note: 1t is up to SOF's discretion on how to react in case the BUS provides a contact roie
that is not agreed upon during the onboarding. Preferably the SOF should return an error

with a message stating which roes are accepted. It may also be ignored

For each serviceOrderItem.

[R10] The BUS's Create Service Order request MUST contain:
29/80



® id
® action

® service

[Rll] When addlng a note, BUS MUST add a note Only with source=bus.

6.1.3. Create Service Order Response

Entities use for providing a response to Create Service Order request are presented in Figure
13. The main types used for response are serviceorder and serviceordertten, Which add attributes
set by SOF (like iq or state) serviceorder 18 the root entity of a response. The response echoes
back all attributes as provided by the BUS and contains the same number of serviceorderttens

as in the request.
The following snippet presents the SOF's response.

service order Create Response

"id": "00000000-3333-4444-5555-000000004567", << added by SOF >>
"href": "{{baseUrl}}/serviceOrder/00000000-3333-4444-5555-000000004567", << added by SOF >>
"state": "acknowledged", << added by SOF >>
"orderDate": "2022-12-28T20:45:24.796Z", << added by SOF >>
"expectedCompletionDate": "2023-01-25T20:00:00.000Z", << added by SOF >>
"description”: "Example Service Order",
"externalId": "busOrder-101",
"requestedCompletionDate": "2023-01-28T20:45:23.796Z2",
"requestedStartDate": "2023-01-02T700:00:00.000Z",
"relatedContactInformation”: [
{
"emailAddress": "john.example@example.com",
"name": "John Example",
"number": "12-345-6789",
"numberExtension": "1234",
"organization": "Example Co.",
"role": "serviceOrderContact"
s
{ << added by SOF >>
"emailAddress": "ella.sof@example.com",
"name": "Ella SOF",
"number": "98-765-4321",

"organization": "SOF Co.",
"role": "sofContact"
}
1,
"note": [
{
"id": "note-001",
"author": "John Example",
"date": "2022-12-28T20:45:23.796Z",
"source": "bus",
"text": "This is an example text"
}s

{ << added by SOF >>
"id": "note-002",
"author": "Ella SOF",
"date": "2022-12-28T20:45:24.796Z",
"source": "sof",

"text": "This is an example response text"
}
1,
"serviceOrderItem": [
{

"id": "item-e01",
"action": "add",
"state": "acknowledged", << added by SOF >>

30/80



"service": {
"id": "00000RV-5555-6666-7777-000000008888", << added by SOF >>
"href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000008888", << added by SOF >>
"state": "feasibilityChecked",

"description”: "IP Virtual Connection",
"externalld": "BUS_IPVC-0001",
"serviceType": "Internet Access",

"name": "IPVC"

<< skipped, as provided by BUS >>
}
s
{
"id": "item-002",
"action": "add",
"state": "acknowledged", << added by SOF >>
"serviceOrderItemRelationship": [
{
"orderItem": {
"itemId": "item-001",
"serviceOrderHref": "string",
"serviceOrderId": "string"
¥
"relationshipType": "IPUNI_ENDPOINT_OF_IPVC"
¥
1,
"service": {
"id": "0000PVV-5555-6666-7777-000000009999", << added by SOF >>
"href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000009999", << added by SOF >>
"state": "feasibilityChecked",
"description": "IPVC End Point",
"externalId": "BUS_IPVC_END_POINT-0001",
"serviceType": "Internet Access",
"name": "IPVCEndpoint",
"serviceRelationship": [

{
"relationshipType™": "CONNECTS_TO_IPUNI",
"service": {
"id": "IP_UNI_0000-0001"
}
¥
]

<< skipped, as provided by BUS >>

Attributes that are set by the SOF in the response are marked with the < added vy sor >> tag.
The response to the create request does not contain all possible attributes. Some of them are

valid Only in the future lifecycle of the serviceorder (Cg completionDate, star‘tDate).

[R12] The SOF's response MUST include all and unchanged attributes' values as provided
by BUS in the request.

The SOF might append related contact information or notes if required, but cannot modify
items set by the BUS.

[R13] The SOF MUST specify the following attributes in a response:

® id
® state

® orderDate

[R14] The i« MUST remain the same value for the life of the Service Order.
31/80



[R15] When adding a note, SOF MUST add a note only with source-sot.
[R16] Notes MUST NOT be modified or deleted once entered.

For each serviceordertten:

[R17] The response MUST have the state attribute set.

[R18] If the Service Order Item state in the SOF's response is not compieted, the response
MUST NOT contain the expectedCompletionDate.

6.1.4. Use Case la: Service Order Item to Add Service

When requesting a new service installation (action equal to add) the BUS needs to provide all
of its configuration information. The example for =dq action is already provided in the

snippets above.
The following requirements apply when serviceorderiten.action 18 add:

[R19] The BUS MUST provide:

® service.state

® service.serviceConfiguration

[R20] If there is a relationship with a Service Order Item within the same Service Order, the

serviceOrderItemRelationship.itemId MUST be SpeCiﬁed.

[R21] If there is a relationship with a Service Order Item within the same Service Order, the
serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId MUST NOT be

specified.

[R22] If there is a relationship with a Service Order Item of another Service Order, the

serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId MUST be specified.

[R23] The BUS MUST NOT specify the serviceorderttem.service.id in the request. It is the SOF

who assigns this id.

Note: The service.id might not be assigned yet at the moment the SOF provides a response

for the Create Service Order Request.
6.1.5. Use case 1b: Service Order Item to Modify Existing Service

The following example shows a request for an order for an existing IPVC End Point Service
modification (action equal to modify). In particular, a change to maximuniunberofpvaroutes 18
introduced.

The IPVC End Point service exists in SOF's inventory and is identified as eeeceece-s555-6666-

7777-000000009999, as provided in SOF response presented in Chapter 6.1.3.

32/80



The following requirements apply to serviceorderzten When action 1S modify:

[R24] The modify request MUST specify a reference (provide service.id) to an existing
service that is a subject of this order and provide the desired service.serviceconfiguration.

[R25] The modify request MUST provide:

* service.id - @ reference to an existing service that is a subject of this order
® service.state

® service.serviceConfiguration

[R26] The modify request MUST repeat the same values (specified or empty) of
service.serviceRelationship, and service.place AS they are available in the inVentory for a giVen

service instance. These values cannot be updated or deleted.

[R27] If there is a relationShip with another Service Order Item, the serviceOrderItemRelationship
MUST be also specified unchanged.

There is no possibility to send an update to single attributes. The BUS must send a full
service description (the whole service.serviceconfiguration section and if set previously or to be
Set: service.servicerelationship aNd service.piace), Which means all attributes that represent the
desired state, even if some of them do not change.

If SOF does not allow for some of the attributes to change an appropriate error response (422)
must be returned to the BUS.

Please also note, that in the add case, a reference to the IPVC service used the
serviceorderItemRelationship pOinting to another serviceorderiten in the same Service Order Request.
This is because the IPVC did not exist at that moment and was also a part of the order. In the
case of ordering the update of an existing IPVC End Point, the IPVC is also existing and it
must be referenced with the use of servicerelationsnip. This example assumes that the [IPVC
service is available in SOF's Inventory with the id equals “eeceeses-s555-6666-7777-000000008835" (aS

provided in SOF response presented in Chapter 6.1.3.

Service Order Item to Modify Existing Service

"description”: "Example Service Order to Modify IPVC End Point service",
"externalId": "busOrder-102",
"requestedCompletionDate": "2023-02-03T720:45:23.796Z2",
"requestedStartDate": "2023-02-02T700:00:00.000Z",
"relatedContactInformation”: [
{
"emailAddress": "john.example@example.com",
"name": "John Example",
"number": "12-345-6789",
"numberExtension": "1234",
"organization": "Example Co.",
"role": "serviceOrderContact"
}
1,
"serviceOrderItem": [
{
"id": "item-001",
"action": "modify",

33/80



"service": {
"id": "0000PV-5555-6666-7777-000000009999", << id to point to service instance >>
"description”: "IPVC End Point",
"externalId": "BUS_IPVC_END_POINT-0001",

"serviceType": "Internet Access”,
"name": "IPVCEndpoint",
"state": "active",

"serviceRelationship": [

{ << relation to IP UNI - not changed >>
"relationshipType™": "CONNECTS_TO_IPUNI",
"service": {

"id": "IP_UNI_0000-0001"
}
s
{ << relation to IPVC - not changed, but provided with serviceRelationship instead of
serviceOrderItemRelationship >>
"relationshipType": "IPUNI_ENDPOINT_OF_IPVC",
"service": {
"id": "000e0VV-5555-6666-7777-000000008888"
¥
¥
1,
"serviceConfiguration": {
"@type": "urn:mef:lso:spec:legato:ipvc-end-point:ve.0.1:all",
"administrativeState": {
"state": "UNLOCKED"
s
"operationalState": {
"state": "ENABLED"

b

"identifier": "IPVC-EndPoint-0000-0001",

"eiType™": "UNI",

"role": "ROOT",

"prefixMapping”: {},

"maximumNumberOfIpv4Routes": 2, << modified value >>

"maximumNumberOfIpv6Routes": @,

"ingressClassOfServiceMap": {},

"egressClassOfServiceMap": {},

"ingressBwpEnvelope": {},

"egressBwpEnvelope": {}

6.1.6. Use case 1c: Service Order Item to Delete Existing Service

The example below represents a single Service Order request for deletion (action-deiete) of an

existing [IPVC End Point service.

Service Order to Delete Existing Service

{
"description”: "Example Service Order to Delete IPVC End Point service",
"externalld": "busOrder-103",
"requestedCompletionDate": "2023-03-03T20:45:23.796Z2",
"requestedStartDate"”: "2023-03-02T00:00:00.000Z",
"serviceOrderItem": [
{
"id": "item-001",
"action": "delete",
"service": {
"id": "0000PLVV-5555-6666-7777-000000009999" << id to point to service instance >>
}
}
]
}

34/80



The following requirements apply to serviceorderzten When action 1S delete:
[R28] service.id MUST be prOVided.

[R29] The BUS MUST NOT provide any service attributes other than service. ia.

6.1.7. Service Order and Service Order Items State Machine

orderAccepted

acknowledged |
|Basic validation done |

=——_ issues detected? El

processingStarted validationFailed

|/ held ‘ issueResolved ‘J inProgress \L actionComplatad ‘ pending \‘

|_Temporar||y delayed due to an issue /‘ orderFallOut ’l\Semce configuration and activation started r actionRequired - Waiting for an action/activity ‘

.

rejected ]
processingComplete
Basic validation failed y,

processingFailed |partiallyCompleted

[ falled N partial |

completed |
|_A\I Order items have failed /I

Some Order items have failed archived

- - i ‘ Service configuration and activation complete |
|.and some have succeeded \ J

archived

Figure 14. Service Order and Service Order Items State Machine

Service Order and Service Order Item share the same list of possible states and states'
transitions. They are presented in Figure 14.

After receiving the request, the SOF performs basic checks of the message. If any problem
is found an Error response is provided. If the validation passes a response is provided with
serviceorder and all serviceorderttens N the acknouledged state. Before moving the order to the
inprogress state, the BUS performs all the remaining business and time-consuming validations.
At this point, an Error response cannot be provided anymore so the order moves to a rejected
state if some issues are found. The serviceordertten. terninationerror acts as a placeholder to

provide a detailed description of what caused the problem.

Table 7 presents the states' descriptions.

State Description

A serviceorder request has been received and has passed message and basic
acknowledged o
validations and a Success Response has been sent.

35/80



State

Description

rejected

This state indicates that:

- Invalid information is provided through the serviceorder / serviceordertten
request

- The request fails to meet validation rules for service delivery (processing)
If one serviceordertten 18 rejected, then the entire serviceorder request is

rejected and a Error Response is sent.

inProgress

This state indicates that all serviceorderrtens have successfully passed the
validations checks and the scheduled service delivery/processing has
started.

The serviceorder Will be 1n inprogress state if at least one serviceordertten 1S In

inProgress State

pending

This state indicates that a serviceorderiten 1S currently in a waiting stage for
an action/activity to be completed before the order-processing can
progress further, pending order amend or cancel assessment.

A pending state can lead into auto cancellation of an serviceordertten, if NO
action is taken within the agreed timeframe.

The serviceorder Will be 1n pending state if at least one serviceordertten 1S In

pending state

held

This state indicates that a serviceorderiten cannot be progressed due to an
issue. The service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate the supply of order. Upon
resolution of the issue, the serviceorderiten Will continue to progress.

A reta state can lead into auto cancellation of a serviceorderrten if N0 action
1s taken within the agreed timeframe.

The serviceorder Will be 1n reta state if at least one serviceorderten 1S 10 hetd

state

failed

This state indicates that service delivery (processing) associated with a
serviceordertten has failed. This indicates an irrecoverable error as opposed
tO held OT pending 1SSUES.

The serviceorder Will be in faiteqd state if at ALL serviceorderitens are in failed

state

completed

This state indicates that service delivery (processing) associated with a
ServiceOrderItem NaS Completed.
The serviceorder Will be in completed State if at ALL serviceorderttens are in

completed State

partial

This state indicates that some serviceordertten are in completed State while
others are in canceltea and/or faited states, so the entire serviceorder 1S in a

partial State.

36 /80



Table 7. Service Order and Service Order Item states
6.1.8. Specifying Place Details

Some service specifications may define requirements concerning place definition in case add
or nodify action is used. For example, an I[P UNI Access Link Trunk service specification

requires an wstacL_ocation place definition.

There are different formats in which place information may be provided: verceographicroint,
FieldedAddress, FormattedAddress, GeographicAddressLabel, GeographicSiteRef, GeographicAddresskef. 1he first four
of them can be used to provide place description by value. The site and address reference
allow specifying the place information as a reference to previously validated address or site
available through SOF's Addressing and Site API endpoints, which definition is provided in
the SDK:

® productApi/serviceability/address/geographicAddressManagement.api.yaml

® productApi/serviceability/site/geographicSiteManagement.api.yaml

The Address Validation and Site APIs are standardized by:

e Address, Service Site, and Product Offering Qualification Management, Requirements
and Use Cases MEF 79

e Amendment to MEF 79: Address, Service Site, and Product Offering Qualification
Management, Requirements, and Use Cases MEF 79.0.1

e Amendment to MEF 79: Address Validation MEF 79.0.2

e LSO Cantata and LSO Sonata Address Management API - Developer Guide MEF 121

e LSO Cantata and LSO Sonata Site Management API - Developer Guide MEF 122

The superclass for all address types is the reiatedriacereforvaiue Which adds the ro1e to add more
context to the specified address. To distinguish between place types the atype discriminator is

used.

Note: The RefOrValue stands for a pattern where an address can be provided either by id
(using GeographicSiteRef OI Geogr‘aphicAddr‘essRe‘F) OR by value (Wlth use of MEFGeographicPoint,
FieldedAddress, FormattedAddress, Geogr‘aphicAddr‘essLabel). There is no way to Specify an address with

use both ref AND value at the same time.

37/80



(©) Fizideaadaressvalue

© Fielgeaanaress

city™: string

country*: string

locality: string

postcode: string
posteodeExtension: string
stateOrProvince: string
streetlame*: string
streethr: string
streetNrLast: string
streethrLastSuffix: string
streetNrsuffic: string
streetSuffix string
streetType: string

city”: string

country*: string

locality: string

postcode: string
postcodeExtension: string
stateOrProvince: string
streethame*: string
streethr: string
streethrLast: string
streethrLastSuffix: string
streetNrsuffic string
streetSuffix: string
streetType: string

@ FormattedAddress

addrLing1* string
addrLine2: string

city*: string

country*: string

locality: string

postcode: string
postcodeExtension: string
stateOrPravince: string

(©reiatedpiaceretorvalue

@type" string
@schemaLacation: uri
role*: string

@Giograpchomt
©GengraphmAddrassLabe\ ©GaugraphmAddressRef ©G ographicSiteRef spatialRer* string
externalReferenceld*: string href: string href: string X string
externalReference Type* string id*: string id*: string y*: string

z string

-

@ GeographicSubAddress

buildinghame: string
levelNumber: string

levelType: string

privateStreetName: string
privateStreetNumber: string

(©) GeograpricsubAdaressunit

.

isubUnit

supUnithumper™: string
SUBUNItType*: string

Figure 15. The data model for place representation

Examples of different place specification formats are provided below.

6.1.8.1. Fielded Address

"@type": "FieldedAddress",

"streetType":
"streetName":

"streetNr": "20",

"ul.",

"Edmunda Wasilewskiego",

"streetNrSuffix": "14",
"city": "Krakéw",

"stateOrProvince":
"postcode":

"country": "Poland",
"geographicSubAddress": {
"levelType": "floor",

"levelNumber": "4"

1

"role": "INSTALL_LOCATION"

"Lesser Poland",
"30-305",

Fielded address example of a place specification. The type discriminator has the value

Fieldedaddress. A subset of available attributes is used to describe the place. The fielded

address has an optional geographicsubaddress structure that defines several attributes that can be

used in case precise address information has to be provided. In the example above, a floor in

the building at the given address is specified using this structure. The role of the place is

assigned according to the requirements of the Operator UNI service specification.

6.1.8.2. Formatted Address

{

"@type": "FormattedAddress",
"addrLinel": "ul. Edmunda Wasilewskiego 20/14",
"addrLine2":

"Floor 4",

38/80



"city": "Krakoéw",
"stateOrProvince": "Lesser Poland",
"postcode": "30-305",

"country": "Poland",

"role": "INSTALL_LOCATION"

Place information in a form of a formatted address. The type discriminator has the value
Formattedaddress. This example contains the same information as the previous rieldedaddress

example.

6.1.8.3. Geographic Point

"@type": "MEFGeographicPoint",
"spatialRef": "EPSG:4326 WGS 84",
"x": "50.048868",

"y": "19.929523",

"role": "INSTALL_LOCATION"

Place information in a form of a geographic point. spatiairer determines the standard that has
to be used to interpret coordinates provided in the required x (latitude), y (longitude), and

optional - (elevation) values.

This type allows only providing a point. It cannot carry more detailed information like the
floor number from previous examples.

[R30] The spatiairer value that can be used MUST be agreed between BUS and SOF.

6.1.8.4. Geographic Address Label

"@type": "GeographicAddressLabel",
"externalReferenceType": "CLLI",
"externalReferenceId": "PLTXCLO1",
"role": "INSTALL_LOCATION"

The Geographic Address Label represents a unique identifier controlled by a generally
accepted independent administrative authority that specifies a fixed geographical location.
The example above is a place that represents a CLLI (Common Language Location
Identifier) identifier which is commonly used to refer locations in North America for

network equipment installations.

6.1.8.5. Geographic Site Reference

{
"@type": "GeographicSiteRef",
"id": "18d3bb74-997a-4262-8198-84250766765a",

39/80



"role": "INSTALL_LOCATION"
}

Geographicsiteref type 1S used to specify a ceographicsite by reference in the request. In the above

example, a ceographicsite identified as 1sdsbb74-997a-1a62-8198-84250766765a in the SOFs Service Site
API is used.

6.1.8.6. Geographic Address Reference

{
"@type": "GeographicAddressRef",
"id": "8198bb74-18d3-9ef0-4913-66765a842507",
"role": "INSTALL_LOCATION"

}

GeographicAddressRef type is used to Specify A GeographicAddress by reference in the request. In the
above example, a ceographicaddress identified as si19sbb74-18d3-9efe-4913-66765a842507 In the SOFs

Service Site API is used.

6.2. Use Case 2: Retrieve List of Service Orders

The BUS can retrieve a list of serviceorders by using a et /serviceorder Operation with desired

filtering criteria.
[O3] The BUS's request MAY contain none or more of the following attributes:

® state

® orderDate.gt

® orderDate.lt

® completionDate.gt

® completionDate.lt

® expectedCompletionDate.gt
® expectedCompletionDate.lt
® startDate.gt

® startDate.lt

A response to retrieve a list of results can be paginated. The BUS can specify following

query attributes related to pagination:

e 1imit - number of expected list items

o orset - Offset of the first element in the result list

The filtering and pagination attributes must be specified in URI query format RFC3986. The
SOF returns a list of elements that comply with the requested 1init. If the requested 1init is

higher than the supported list size the smaller list result is returned. In that case, the size of

40/80



the result is returned in the header attribute x-resuit-count. The SOF can indicate that there are

additional results available using:

® xTotal-count header attribute with the total number of available results

® X-Pagination-Throttled header set to true

https://serverRoot/mefApi/legato/serviceOrderingManagement/v5/serviceOrder?state=completed&limit=10&offset=0

The example above shows a BUS's request to get all serviceorders that are in the compieted state.
Additionally, the BUS asks only for a first (orfset-0) pack of 10 results (1init-10) to be
returned. The correct response (HTTP code 2¢0) in the response body contains a list of

ServiceOrder ObjeCtS matching the criteria.

[R31] In case no items matching the criteria are found, the SOF MUST return a valid

response with an empty list.

6.3. Use Case 3: Retrieve Service Order by Service Order
Identifier

The BUS can get detailed information about the Service Order from the SOF by using a cer
/serviceorder/{{id}} operation. The payload returned in the response includes all attributes the
BUS has provided while sending a Service Order create request. The attributes provided by

the SOF depend on the status of the serviceorder and may require some time to be set.

Both Get List and Get by Identifier operations return the same serviceorder representation, so a
response to a get by id for a serviceorder With id-eeeeeeee-3333-4444-5555-000eeeeesss7 would return

exactly sae response as presented in section 6.1.3.

[R32] In case id does not allow finding a serviceorder in SOF's system, an error response
erroraes MUST be returned.

[R33] Once the service identifier (ser‘viceOr‘der‘.serviceOr‘derItem.ser‘vice.id) is assigned, it MUST be

provided in the SOF's response.

6.4. Use case 4: Register for Notifications

The SOF communicates with the BUS with Notifications provided that:

e BUS supports a notification mechanism

e BUS has registered to receive notifications from the SOF
[O4] BUS MAY register for Notifications.

Supporting Notification is mandatory for SOF.

41/80



To register for notifications the BUS uses the registertistener Operation from the API: post /hus.
The request contains only 2 attributes:

e caiback - mandatory, to provide the callback address the events will be notified to,
* query - Optional, to provide the required types of event.

The figure below shows all entities involved in the Notification use cases.

@ ServiceOrderEventType
© event :
serviceOrderCreateEvent
eventld®: string serviceOrderStateChangeEvent
eventTime* date-time serviceOrderitemStateChangeEvent
serviceCOrderinformationRequiredEvent

© ServiceOrderEvent

eventType* ServiceOrderEventType
[ )

event

1
Y

© ServiceCrderEventPayload

orderltemid: string
id* string
href: string

Figure 16. Service Ordering Notification Data Model

By using a simple request:

{
"callback": "https://bus.com/listenerEndpoint™

}

The BUS subscribes for notification of all types of events. Those are:

® serviceOrderCreateEvent

® serviceOrderStateChangeEvent

® serviceOrderItemStateChangeEvent

® serviceOrderInformationRequiredEvent

If the BUS wishes to receive only notifications of a certain type, a query must be added:

{
"callback": "https://bus.com/listenerEndpoint",
"query": "eventType=serviceOrderStateChangeEvent"

}

If the BUS wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

42180



eventType=serviceOrderStateChangeEvent, serviceOrderItemStateChangeEvent

or

eventType=serviceOrderStateChangeEvent&eventType=serviceOrderItemStateChangeEvent

The query formatting complies with RFC3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this

standard requires only eventType attribute to be supported.
[R34] cventtype 1s the only attribute that the SOF MUST support in the query.

The SOF responds to the subscription request by adding the iq of the subscription to the

message that must be further used for unsubscribing.

"id": "00000000-0000-0000-0000-000000000678",
"callback": "https://bus.com/listenerEndpoint",
"query": "eventType=serviceOrderStateChangeEvent"

¥

Example of a final address that the Notifications will be sent to (fOI' ser‘viceOr‘der‘StateChangeEvent):

® https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingNotification/v5/1listener/serviceOrderStateChange

Event

6.5. Use case 5: Send Notification

Notifications are used to asynchronously inform the BUS about the respective objects and

attributes changes.

For sake of readability, all previous flow diagrams presented only cases of using only the
serviceorderstatechangeevent. Figure 17 presents the an end-to-end sequence of communication in
Use Case 1 - Create Service Order with BUS's subscription to both serviceorderstatechangeevent

and serviceOrderItemStateChangeEvent €VENt types.

43/80



BUS ‘ SOF ‘

i POST {{haseUr}/hub with {{callbackUrl}} !

:1 201 confirmation with {{id}} !

i POST {{baselrl}//serviceOrder !

' basic validation

assign ServiceOrder.id

alt [succesful inquiry] !
" 201 SeniceOrder with {{id}} in "acknowledged” state !

i, SewviceOrderltems in "acknowledged” state

L3

:1 {{callbackUr}ylistener/seniceCrderCreateEvent {{id}} |

| 204 confirmation i

Y

| First ServiceOrderltem moves to ‘inProgress’ Iﬁ

_ {{callbackUrl listener/seniceOrdertemStateChangeEvent {{id}), {{SenviceOrdertern.id}}

| 204 confirmation

-
>

| ServiceCrder moves to “inProgress’ Iﬁ

{callbackUr}ylistener/senviceOrderStateChangeEvent {{id}}

2

04 confirmation

U AN

loo [for each of remaining ServiceOrderitems that move to “inProgress’] :
_ {{callbackUr}}/listener/senviceOrderltemStateChangeEvent {{id}}, {{SeniceOrderltem.id}} |

| 204 confirmation

=
>

| Processing without any issues Iﬁ

II:II:IE ) [for each ServiceOrderitem that moves to “completed’]
' {icallbackUrl}}/listener/'seniceOrderltemStateChangeEvent {{id}}, {{SeniceOrderltem.id}}

| 204 confirmation

o
=

All ServiceOrderlterns in “completed’ state Iﬁ

_ {{callbackUr}listener/senviceCrderStateChangeEvent {{id}}

204 confirmation

Y

GET {{baseUr}}seniceOrder/f{id}}

BUR T S A

200 ServiceOrder in “completed” state

oEtionaI ) [if ServiceOrder moves to accepted, declined, or expired]
:_' {{callbackUr})listener/senice OrderStateChangeEvent ({{id}})

204 confirmation

Y

GET {{baseUr}}¥seniceOrder/{{id}}

S U A AN RN

200 ServiceOrder in current state

-
<

I
[validation or internal problem]
]

I dxx or 5xx errorresponse

3

' DELETE {{baseUrl}}/hub/ifid}} |

:_' 204 confirmation |

Figure 17. Use Case 1 - Create Service Order with all Notifications

44180



After a successful Notification subscription, the BUS sends a Service Order create request.
The SOF responds with Service Order and all items in acknowiedged state. Creation of Service
Order is notified with a serviceordercreateevent. When the first Service Order Item moves to
inProgress, @ serviceorderTtemstatechangetvent 18 sent. Immediately the Service Order also changes its
state to inprogress and the serviceorderstatechangeevent 18 sent. Then the rest (if any) of the Service
Order Items are processed. When particular items are done processing they reach the compieted
state. Once all are successfully done, the Service Order also changes state to compieted. The
BUS will likely now ask for the Service Order details.

Note: The state change notification are sent only when the state attribute actually changes
it's value. There are no status change notifications sent upon Service Order or Service Order

Item creation.
[R35] The SOF MUST NOT send Notifications to BUS that have not registered for them.
[R36] The SOF MUST send Notifications to BUS that have registered for them.

Following snippets present examples of serviceorderstatechangeevent and

serviceOrderItemStateChangeEvent:

"eventId": "event-001",
"eventType": "serviceOrderStateChangeEvent",
"eventTime": "2022-12-28T20:45:24.796Z",
"event": {
"id": "00000000-3333-4444-5555-000000004567"
}
}

[R37] An event triggered by the Service Order Item (ser‘viceOr‘der‘ItemStateChangeEvent) MUST
additionally contain the relative orderttentd.

"eventId": "event-002",
"eventType": "serviceOrderItemStateChangeEvent",
"eventTime": "2023-01-15T20:45:24.796Z",
"event": {
"id": "00000000-3333-4444-5555-000000004567",
"orderItemId": "item-001"

¥
¥

Note: the body of the event carries only the source object's ia. The BUS needs to query it
later by i4 to get details.

To stop receiving events, the BUS has to use the unregistertistener Operation from the oeere
/hub/{id} endpoint. The iq 1s the identifier received from the SOF during the listener

registration.

45/80



6.6. Service Lifecycle

Above chapters focus on the requirements and the lifecycle of serviceorder and serviceordertten. It
is also very important to understand the lifecycle of the service itself and how to manage it

with the Service Ordering.

checkFeasibility
(action=add)

| feasibilityCheclked |
designSemnice resenveSenice
(action=add) Resources have been checked (action=add)
.\for availahility

provisionSeruies . activateService
designSenice reseneSenice
(actier=add) (action=add)

|/ reserved ‘
}l ‘ activateSenice

" designed | resenveSenice
‘.\Resourc&s have been identified/allocated _L__d_tﬂme___ Resources have been reserved/blocked )

provisionSerice

provisionService activateSenice provisionSenice activateSenice

P

inactive ) . active
deactivateService
Resuurcgs have been provisioned activateSenvice Resu.urc.es have been activated and
\but Service is not yet ready f‘—‘—ﬁ—e—'—’-"\Semce is ready for use

terminateSenice terminateSenice

terminated
.\Serwce is shut down |

retireSenvice
action=delete)

Figure 18. Service Lifecycle
Figure 19 depicts the Service available states and their transitions.

The service lifecycle starts with the state provided in the add request. All but terninateds can be

the initial state.

BUS can order Service state transition by placing a serviceordertten With action=modify and
providing the desired service.state attribute. Transitions triggered by the same desired state
form sort of use cases that can be performed on a Service. They are gathered in Table 8

together with requirements on the Service state they are applicable for.

Use case action state pre-condition

checkFeasibility add feasibilityChecked N/A

designService add designed N/A

feasibilityChecked

modify designed
reserved

46 /80



Use case action state pre-condition

reserveService  add reserved N/A
. feasibilityChecked
modify reserved )
designed
provisionService add inactive N/A
feasibilityChecked
modify inactive designed
reserved
activateService  add active N/A
feasibilityChecked
] ] designed
modify active
reserved
inactive
deactivate modify inactive active
) ) ) ) inactive
terminateService modify terminated .
active

Table 9. Service Life Use Cases
A Service in state-terminated can be retired (deleted) with a serviceordertten With action=delete.

Table 10 summarizes the states and their descriptions:

State Description
o Initial check whether the necessary resources are available and
feasibilityChecked ) ) ] ] i
sufficient for the installation of a given service.
. The Service is designed. The resources are identified and/or
designed
allocated, but not reserved.
reserved All required resources for given service are reserved and ready.
inactive The service is deactivated and is no longer available.
active The service is fully available and active
. The service 1s 'logically deleted'. All associated resources are freed
terminated

and made available for service to other users.

Table 10. Service states

7. API Details

47180



7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and appropriate
response payload. The Service Order API uses the error responses as depicted and described

below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the error.

@ Error400Code S SIEEE—
a - - @ErmmmCuda @ Error
missingQueryParameter - -
missingQuenyvalue missingCredentials m;:f;%zs;mng
invalidQuery invalidCredentials r:ferenceErrugr ur
invalidBody —————————— 1
® Errorazzcone
@) Erroraoacose missingPraperty
Invalldvalue @ Error400 @ Erord01 @ Errord03 ©Errur40=1 ©ErrurADB @ Ermor422 ©Errur500

accessDenied invalidF armat code* Errord22Code
forbiddenRequester referenceNotFound code™ Error400Code code” Errord01Caode code” Error403Code code®: string code®: string
tooManyusers unexpectedProperty
- toomanyRecords
atherlssue

code” string

propertyPath: string

Figure 20. Data model types to represent an erroneous response
7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used

directly. The coce in the HTTP header is used as a discriminator for the type of error returned

in runtime.
Name Type Description
. Text that provides mode details and corrective actions related to
message string . .
the error. This can be shown to a client user.
. Text that explains the reason for the error. This can be shown to a
reason® string .
client user.
referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc723 1#section-6.5.1)
Inherits from:

e Error

48 /80



Name Type Description

One of the following error codes: - missingQueryParameter: The
URI is missing a required query-string parameter -

code* Error400Code missingQueryValue: The URI is missing a required query-string
parameter value - invalidQuery: The query section of the URI is
invalid. - invalidBody: The request has an invalid body

7.1.1.3. enun Error400Code

Description: One of the following error codes:

e missingQueryParameter: The URI is missing a required query-string parameter
¢ missingQueryValue: The URI is missing a required query-string parameter value
e invalidQuery: The query section of the URI is invalid.

e invalidBody: The request has an invalid body

Value

missingQueryParameter

missingQuery Value

invalidQuery

invalidBody

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)
Inherits from:

e Error

Name Type Description

One of the following error codes: - missingCredentials: No
code* Error401Code credentials provided. - invalidCredentials: Provided credentials

are invalid or expired

7.1.1.5. enun Error401Code

Description: One of the following error codes:

* missingCredentials: No credentials provided.

e invalidCredentials: Provided credentials are invalid or expired

Value
49 /80



Value

missingCredentials

invalidCredentials

7.1.1.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc723 1#section-6.5.3)

Inherits from:

e Error

Name Type Description

This code indicates that the server understood the request but

refuses to authorize it because of one of the following error

code* Error403Code . ] ]
codes: - accessDenied: Access denied - forbiddenRequester:

Forbidden requester - tooManyUsers: Too many users

7.1.1.7. enun Error403Code

Description: This code indicates that the server understood the request but refuses to

authorize it because of one of the following error codes:

 accessDenied: Access denied
 forbiddenRequester: Forbidden requester

* tooManyUsers: Too many users

Value

accessDenied

forbiddenRequester

tooManyUsers

7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc723 1#section-6.5.4)

Inherits from:

e Error

Name Type Description

50/80



Name Type Description

The following error code: - notFound: A current representation for the

code* string

target resource not found

7.1.1.9. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the errora22

data type. Each list item describes a business validation problem. This type introduces the

propertypath attribute which points to the erroneous property of the request, so that the BUS

may fix it easier. It is highly recommended that this property should be used, yet remains

optional because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

e Error
Name Type
code* Errord22Code

Description

One of the following error codes: - missingProperty: The
property that was expected is not present in the payload -
invalidValue: The property has an incorrect value -
invalidFormat: The property value does not comply with
the expected value format - referenceNotFound: The
object referenced by the property cannot be identified in
the target system - unexpectedProperty: Additional, not
expected property has been provided - tooManyRecords:
the number of records to be provided in the response
exceeds the threshold. - otherIssue: Other problem was

identified (detailed information provided in a reason)

propertyPath string

7.1.1.10. enun Error422Code

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

Description: One of the following error codes:

e missingProperty: The property that was expected is not present in the payload

e invalidValue: The property has an incorrect value

51/80



e invalidFormat: The property value does not comply with the expected value format

 referenceNotFound: The object referenced by the property cannot be identified in the
target system

e unexpectedProperty: Additional, not expected property has been provided

e tooManyRecords: the number of records to be provided in the response exceeds the
threshold.

e otherlssue: Other problem was identified (detailed information provided in a reason)

Value

missingProperty

invalidValue

invalidFormat

referenceNotFound

unexpectedProperty

tooManyRecords

otherIssue

7.1.1.11. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc723 1#section-6.6.1)
Inherits from:

e Error

Name Type Description

The following error code: - internalError: Internal server error - the server
code* string encountered an unexpected condition that prevented it from fulfilling the
request.

7.2. Management API Data model

Figure 21 presents the whole Service Order Management data model. The data types are
discussed later in this section.

52 /80



Figure 21. Service Order Management Data Model

7.2.1. ServiceOrder

7.2.1.1 Type ServiceOrder Common

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)

system that will orchestrate the Service fulfillment.

This type defines all attributes common to objects used in request and response.

Name Type Multiplicity Description

The interval after the
completion of one or

more related Service

coordinatedAction OrderCoordinatedAction[] 0..* .
Order Items that this
Service Order Item can be
started or completed
o ) A free-text description of
description string 0..1 .
the service order
. ID given by the consumer
externalld string 0..1

to facilitate searches

53/80



Name Type Multiplicity Description

Extra-information about
the order; e.g. useful to
note Note BusSof]] 0..* ?dd extraT delivery
- information that could be
useful for a human

process

A list of service orders

related to this order (e.g.
orderRelationship ServiceOrderRelationship[]  0..* . (c.g

prerequisite, dependent

on)

Contact information of an
individual or organization
playing a role for this
relatedContactInformation  RelatedContactInformation[] 0..* Serv?ce‘: Order.' For .
providing Notification
Contact,
‘role=notificationContact’

MUST be used.

Requested delivery date
requestedCompletionDate* date-time 1 from the requestors

perspective

) Order start date wished
requestedStartDate* date-time 1
by the requestor

7.2.1.2. Type ServiceOrder_Create

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)
system that will orchestrate the Service fulfillment. This type extends serviceorder_conmon and

adds attributes specific to the request response.
Inherits from:

e ServiceOrder Common

Name Type Multiplicity Description
54780



Name Type Multiplicity Description

A list of service order
serviceOrderltem® ServiceOrderltem Create[] 1..* items to be processed by

this order

7.2.1.3. Type ServiceOrder

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)

system that will orchestrate the Service fulfillment.
Inherits from:

e ServiceOrder Common

Name Type Multiplicity Description
href uri 0..1 Hyperlink reference
id* string 1 unique identifier
Effective delivery date
completionDate date-time 0..1 amended by the
provider
Expected delivery date
expectedCompletionDate date-time 0..1 amended by the
provider

A list of service order

serviceOrderltem* ServiceOrderltem[] 1..* items to be processed
by this order
Date when the order
startDate date-time 0..1 was started for
processing

The state of the

state* ServiceOrderStateType 1 .
Service Order

55/80



Name

Type Multiplicity Description

orderDate*

Date when the Service
Order was created in
the SOF's system and
a Service Order

date-time 1

Identifier was

assigned

7.2.1.4. enun ServiceOrderStateType

Description: Possible values for the state of a Service Order

State

Description

acknowledged

A serviceorder request has been received and has passed message and basic

validations and a Success Response has been sent.

rejected

This state indicates that:

- Invalid information is provided through the serviceorder / serviceordertten
request

- The request fails to meet validation rules for service delivery (processing)
If one serviceordertten 1s Tejected, then the entire serviceorder request is

rejected and a Error Response is sent.

inProgress

This state indicates that all serviceordertens have successfully passed the
validations checks and the scheduled service delivery/processing has
started.

The serviceorder Will be 1n inprogress state if at least one serviceorderiten 1S In

inProgress State

pending

This state indicates that a serviceorderiten 1S currently in a waiting stage for
an action/activity to be completed before the order-processing can
progress further, pending order amend or cancel assessment.

A pendging state can lead into auto cancellation of an serviceorderttem, if NO
action is taken within the agreed timeframe.

The serviceorder Will be 1n pending state if at least one serviceorderiten 1S In

pending state

held

This state indicates that a serviceordertten cannot be progressed due to an
issue. The service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate supply of order. Upon
resolution of the issue, the serviceordertten Will continue to progress.

A netd state can lead into auto cancellation of an serviceorderrten, if NO action
is taken within the agreed timeframe.

The serviceorder Will be in reid state if at least one serviceorderten 18 1N retd

state

56 / 80



State Description

This state indicates that service delivery (processing) associated with a

serviceordertten has failed. This indicates an irrecoverable error as opposed
failed tO held OT pending 1SSUES.

The serviceorder Will be in faitea state if at ALL serviceorderttens are in faited

state

This state indicates that service delivery (processing) associated with a

ServiceorderIten NS Completed.

completed ) i ) )
The serviceorder Will be in completed State if at ALL serviceorderttens are in
completed State
This state indicates that some serviceordertten are in completed State while
partial others are in cancetted and/or rfaited states, so the entire serviceorder 1S in a

partial State.

7.2.1.5. Type ServiceOrderRef

Description: Reference to a Service Order instance.

Name Type Multiplicity Description
href  string 0..1 A hyperlink to the related order

id* string 1 The id of the related order

7.2.1.6. Type ServiceOrderRelationship
Description: Reference to a related Service Order and the type of that association.

Name Type Multiplicity Description

serviceOrder* ServiceOrderRef 1 A reference to a Service Order

57 /80



Name Type Multiplicity Description

Specifies the type (nature) of the
relationship to the related Service.
The nature of required relationships
varies for Services of different
types. For example, a UNI or ENNI
Service may not have any
relationships, but an Access E-Line
may have two mandatory
relationshipType* string 1 relationships (related to the UNI on
one end and the ENNI on the other).
More complex Services such as
multipoint IP or Firewall Services
may have more complex
relationships. As a result, the
allowed and mandatory
‘relationshipType" values are

defined in the Service Specification.

7.2.2. Service Order Item

7.2.2.1 Type ServiceOrderItem Common

Description: An identified part of the order. A service order is decomposed into one or
more order items. This type holds the attributes common to request and response

representation of the Service Order Item.

Name Type Multiplicity Description
Identifier of the
order item

id* string 1 (generally itis a

sequence number
01, 02,03, ...)

Action to be
applied to the
action* ServiceActionType 1 Service referred
by this Service
Order Item

58 /80



Name

Type

Multiplicity

Description

coordinatedAction

OrderltemCoordinatedAction[]

0.*

The interval after
the completion of
one or more
related Service
Order Items that
this Service Order
Item can be
started or

completed

note

Note BusSof]

Extra-information
about the order
item; e.g. useful
to add extra
delivery
information that
could be useful
for a human

process

service*

ServiceValue

A description of
the service that is
the subject of this
service order

item.

serviceOrderltemRelationship

ServiceOrderltemRelationship(]

59/80

0.*

Specifies the type
(nature) of the
relationship to the
related Service.
The nature of
required
relationships
varies for
Services of
different types.
For example, a
UNI or ENNI
Service may not
have any
relationships, but
an E-Line may

have two



Name Type

7.2.2.2. Type ServiceOrderItem_Create

Multiplicity Description

mandatory
relationships
(related to the
UNI on one end
and the ENNI on
the other). More
complex Services
such as multipoint
IP or Firewall
Services may
have more
complex
relationships. As
a result, the
allowed and
mandatory
‘relationshipType'
values are defined
in the Service
Specification.
Related items can
be both from
within the same
Service Order or
from other one.
When referencing
item within the
same Service
Order,

Description: An identified part of the order. A service order is decomposed into one or

more order items. This type is used in the request.

Inherits from:

e ServiceOrderltem Common

7.2.2.3. Type ServiceOrderItem

60 /80



Description: An identified part of the order. A service order is decomposed into one or
more order items. The modelling pattern introduces the comon supertype to aggregate
attributes that are common to both serviceorderzten and serviceorderiten create. The create type has a
subset of attributes of the response type and does not introduce any new, thus the create type
has an empty definition

Inherits from:

e ServiceOrderltem Common

Name Type Multiplicity Description

state* ServiceOrderStateType 1 State of the Service Order Item

When the SOF cannot process
terminationError TerminationError[] 0..* the request, the SOF returns a

text-based list of reasons here.

7.2.2.4. enun ServiceActionType

Description: Action to be applied to the Service referred by this Service Order Item

Value
add
modify

delete

7.2.2.5. Type ServiceOrderItemRef

Description: A reference to a Service Order Item. When referencing item from within the

same Service Order, the serviceorderta and serviceorderrrer MUST be empty

Name Type Multiplicity Description

) ) Identifier of referenced item within the
itemId* string 1 .
referenced Service Order

. ) Link to the order to which the referenced item
serviceOrderHref string 0..1
belongs to

. i Identifier of the order to which the referenced
serviceOrderld string  0..1 .
item belongs to

7.2.2.6. Type ServiceOrderItemRelationship

Description: Specifies the type (nature) of the relationship to the related Service. The
nature of required relationships varies for Services of different types. For example, a UNI or
61/80



ENNI Service may not have any relationships, but an E-Line may have two mandatory

relationships (related to the UNI on one end and the ENNI on the other). More complex

Services such as multipoint IP or Firewall Services may have more complex relationships.

As a result, the allowed and mandatory reiationshiprype Values are defined in the Service

Specification. Related item can be both from within the same Service Order or from other

one. When referencing item from within the same Service Order, the ordertten. serviceordertd

and orderten. serviceorderiref MUST be empty

Name Type Multiplicity Description
) A reference to a Service Order

orderltem* ServiceOrderltemRef 1
Item
Specifies the nature of the
relationship to the related

) ] ) Service Order Item. A string
relationshipType* string 1

7.2.3. Service representation

7.2.3.1. Type ServiceValue

that is one of the relationship
types specified in the Service

Specification.

Description: ServiceValue is a base class for defining the Service.

Name Type Multiplicity Description
) Hyperlink reference to a
href string 0..1 .
Service
) ) unique identifier of a
id string 0..1 .
Service
o ) Free-text description of
description string 0..1 .
the service
. ID given by the consumer
externalld string 0..1 »
to facilitate searches
) Date when the service
startDate date-time 0..1
starts
) Date when the service
endDate date-time 0..1
ends
Represent the state of
state ServiceStateType 0..1 lifecycle of the Service

Order.

62 /80



Name

Type

Multiplicity

Description

note

Note BusSof]]

0.*

A list of notes made on

this service

serviceType

string

0..1

Business type of the

service

name

string

0..1

Name of the service

serviceRelationship

ServiceRelationship[]

Specifies the type (nature)
of the relationship to the
related Service. The
nature of required
relationships varies for
Services of different
types. For example, a UNI
or ENNI Service may not
have any relationships,
but an Access E-Line may
have two mandatory
relationships (related to
the UNI on one end and
the ENNI on the other).
More complex Services
such as multipoint IP or
Firewall Services may
have more complex
relationships. As a result,
the allowed and
mandatory
‘relationshipType” values
are defined in the Service

Specification.

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of an
individual or organization
playing a role for this
Service

place

RelatedPlaceRefOrValue[]

0.*

The relationships between
this Service Order Item
and one or more Places as
defined in the Service

Specification.

63 /80



Name Type Multiplicity Description

MEFServiceConfiguration
is used to specify the
MEF specific service
payload. This field MUST
be populated for all item
serviceConfiguration MefServiceConfiguration 0..1 'actions' other than
'delete'. It MUST NOT be
populated when an item
“action’ is ‘delete’. The
@type isused as a
discriminator.

7.2.3.2. Type MefServiceConfiguration

Description: MEFServiceConfiguration is used as an extension point for MEF specific

service payload. The atype attribute is used as a discriminator

Name Type Multiplicity Description

) The value of the "$id" as defined in the JSON schema of
@type* string 1 .
the service.

7.2.3.3. Type ServiceRelationship

Description: A relationship to an existing Service. The requirements for usage for given

Service are described in the Service Specification.

Name Type Multiplicity Description

Specifies the type (nature) of the
relationship to the related Service. The
nature of required relationships varies for
Services of different types. For example, a
UNI or ENNI Service may not have any
relationships, but an Access E-Line may
have two mandatory relationships (related
to the UNI on one end and the ENNI on

the other). More complex Services such

relationshipType* string 1

as multipoint IP or Firewall Services may
have more complex relationships. As a
result, the allowed and mandatory
‘relationshipType™ values are defined in

the Service Specification.

64 /80



Name Type Multiplicity Description

service* ServiceRef 1 A reference to a Service

7.2.3.3. enun ServiceStateType

Description: Valid values for the lifecycle state of the Service.

State Description

o Initial check whether the necessary resources are available and
feasibilityChecked ) ) ] ] )
sufficient for the installation of a given service.

The Service is designed. The resources are identified and/or

designed
allocated, but not reserved.
reserved All required resources for given service are reserved and ready.
inactive The service is deactivated and is no longer available.
active The service is fully available and active
. The service is 'logically deleted'. All associated resources are freed
terminated

and made available for service to other users.

7.2.3.3. Type ServiceRef

Description: Reference to a Service instance.

Name Type Multiplicity Description

href  string O0..1 Hyperlink reference to Service

id* string 1 unique identifier of Service

7.2.4. Place representation

There are several formats in which place information can be introduced to the Service Order

request. They are described in Section 6.1.8.
7.2.4.1. Type RelatedPlaceRefOrValue

Description: A Place provided either by value or by reference

Name Type Multiplicity Description

This field is used as a discriminator and is
@type* i | used between different place representations.
e strin
P 8 This type might discriminate for additional

related place as defined in '@schemal ocation'.

65 /80



Name Type Multiplicity Description

A URI to a JSON-Schema file that defines
@schemalocation uri 0..1 additional attributes and relationships. May be

used to define additional related place types.

role* string 1 Role of this place

7.2.4.2. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Inherits from:

¢ RelatedPlaceRefOrValue

Name Type Multiplicity Description
The city that the address

city* string 1 .
is in

. Country that the address
country* string 1 .
is in

Additional fields used to
geographicSubAddress GeographicSubAddress 0..1 specify an address, as

detailed as possible.

The locality that the

localit strin 0..1
Y 8 address is in

Descriptor for a postal

delivery area, used to
postcode string 0.1 speed and simplify the

delivery of mail (also

known as zip code)

An extension of a postal
code. E.g. the part

postcodeExtension string 0..1 following the dash in a
US urban property
address

The State or Province

stateOrProvince string 0..1 .
that the address is in

) Name of the street or
streetName™ string 1
other street type

66 / 80



Name Type Multiplicity Description

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged

streetNr string 0..1 addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
APIL.

Last number in a range
streetNrLast string 0..1 of street numbers

allocated to a property

Last street number
streetNrLastSuffix string 0..1 suffix for a ranged

address

) The first street number
streetNrSuffix string 0..1
suffix

. A modifier denoting a
streetSuffix string 0..1 ) L
relative direction

The type of street (e.g.,
alley, avenue,
boulevard, brae,
streetType string 0..1 crescent, drive,
highway, lane, terrace,

parade, place, tarn, way,
wharf)

7.2.4.3. Type FieldedAddressValue

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Multiplicity Description
The city that the address

city*® string 1 o
is in

67 /80



Name

Type

Multiplicity Description

country*

string

Country that the address

1S in

geographicSubAddress

GeographicSubAddress

Additional fields used to
specify an address, as

detailed as possible.

locality

string

The locality that the

address is in

postcode

string

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also

known as zip code)

postcodeExtension

string

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

stateOrProvince

string

The State or Province
that the address is in

streetName*

string

Name of the street or

other street type

streetNr

string

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
APIL.

streetNrLast

string

0..1

Last number in a range
of street numbers

allocated to a property

streetNrLastSuffix

string

0..1

Last street number
suffix for a ranged

address

68 /80



Name Type Multiplicity Description

] The first street number
streetNrSuffix string 0..1
suffix

. A modifier denoting a
streetSuffix string 0..1 ] o
relative direction

The type of street (e.g.,
alley, avenue,
boulevard, brae,

streetType string 0..1 crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

7.2.4.4. Type FormattedAddress

Description: A type of Address that has discrete fields for each type of boundary or
identifier with the exception of street and more specific location details, which are
combined into a maximum of two strings based on local postal addressing conventions.
Reference: MEF 79 (Sn 8.9.3)

Inherits from:

¢ RelatedPlaceRefOrValue

Name Type Multiplicity Description

addrLinel* string 1 The first address line in a formatted address
addrLine2 string  0..1 The second address line in a formatted address
city* string 1 The city that the address is in

country* string 1 Country that the address is in

An area of defined or undefined boundaries
) ) within a local authority or other legislatively
locality string  0..1 . .
defined area, usually rural or semi-rural in

nature

Descriptor for a postal delivery area, used to
postcode string  0..1 speed and simplify the delivery of mail (also
known as ZIP code)

An extension of a postal code. E.g. the part
postcodeExtension string 0..1 following the dash in an US urban property

address

stateOrProvince string 0..1 The State or Province that the address is in

69 /80



7.2.4.5. Type GeographicPoint

Description: A GeographicPoint defines a geographic point through coordinates.
Reference: MEF 79 (Sn 8.9.5)

Inherits from:

o RelatedPlaceRefOrValue

Name Type Multiplicity Description

The spatial reference system used to determine the
i ) coordinates (e.g. "WGS84"). The system used and the
spatialRef* string 1 . .
value of this field are to be agreed during the

onboarding process.

The latitude expressed in the format specified by the

x* string 1 . )
spacialRef"
) The longitude expressed in the format specified by the
y* string 1 . )
spacialRef"
. The elevation expressed in the format specified by the
z string  0..1

‘spacialRef’

7.2.4.6. Type GeographicAddressLabel

Description: A unique identifier controlled by a generally accepted independent
administrative authority that specifies a fixed geographical location. Reference: MEF 79 (Sn
8.9.4)

Inherits from:

e RelatedPlaceRefOrValue

Name Type Multiplicity Description

externalReferenceld* string 1 A reference to an address by id

Uniquely identifies the authority that
specifies the addresses reference and/or
its type (if the authority specifies more
than one type of address). The value(s)
externalReferenceType* string 1 to be used are to be agreed during the
onboarding. For North American
providers this would normally be CLLI
(Common Language Location Identifier)

code.

70/80



7.2.4.7. Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Multiplicity Description

Allows for
identification of
o : places that require
buildingName string 0..1 .
building name as
part of addressing

information

Used where a level
type may be
levelNumber string 0..1 repeated e.g.
BASEMENT 1,
BASEMENT 2

Describes level
levelType string 0..1 types within a
building

"Private streets
internal to a
property (e.g. a

) i university) may

privateStreetName string 0..1 .

have internal names
that are not recorded
by the land title

office

Private streets
privateStreetNumber string 0..1 numbers internal to

a private street

Representation of a
MEFSubUnit It is
used for describing

subunit within a

*

subUnit GeographicSubAddressUnit[] O.. subAddress e.g.
BERTH, FLAT,
PIER, SUITE,
SHOP, TOWER,

UNIT, WHARF.

7.2.4.8. Type GeographicSubAddressUnit

71/80



Description: Allows for sub unit identification

Name Type Multiplicity Description

) ) The discriminator used for the subunit, often
subUnitNumber* string 1 ) i
just a simple number but may also be a range.

The type of subunit e.g. BERTH, FLAT, PIER,

subUnitType* string 1
SUITE, SHOP, TOWER, UNIT, WHARF.

7.2.4.9. Type GeographicAddressRef

Description: A reference to a Geographic Address resource available through Address
Validation API.

Inherits from:

o RelatedPlaceRefOrValue

Name Type Multiplicity Description

Hyperlink to the referenced GeographicAddress. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the

BA in a request

href  string O0..1

Identifier of the referenced Geographic Address. This
id* string 1 identifier is assigned during a successful address validation
request (Geographic Address Validation API)

7.2.4.10. Type GeographicSiteRef

Description: A reference to a Geographic Site resource available through Service Site API
Inherits from:

o RelatedPlaceRefOrValue

Name Type Multiplicity Description

Hyperlink to the referenced GeographicSite. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the

BA in a request

href  string 0..1

id* string 1 Identifier of the referenced Geographic Site.
7.2.5. Notification registration

72/80



Notification registration and management are done through /nuw API endpoint. The below

sections describe data models related to this endpoint.
7.2.5.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

Name Type Multiplicity Description

This callback value must be set to *host* property from Service Ord
(serviceOrderNotification.api.yaml). This property is appended with

callback* string 1 in that API to construct an URL to which notification is sent. E.g. for
service order state change event notification will be sent to:

“https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingMa

This attribute is used to define to which type of events to register to.
serviceOrderStateChangeEvent". To subscribe for more than one eve
query string 0..1 “eventType=serviceOrderStateChangeEvent,serviceOrderltemStateC
'serviceOrderEventType' in serviceOrderNotification.api.yaml. An e

in subscription for all event types.

7.2.5.2. Type EventSubscription

Description: This resource is used to respond to notification subscriptions.

Name Type Multiplicity Description

_ The value provided by in *EventSubscriptionInput’
callback* string 1 . i ) . )
during notification registration

. . An identifier of this Event Subscription assigned when
id* string 1 .
a resource is created.

. The value provided by the "EventSubscriptionlnput’
query string  0..1 . i ) . .
during notification registration

7.2.6. Common
Types described in this subsection are shared among two or more Cantata and Sonata APIs.
7.2.6.1. Type OrderCoordinatedAction

Description: The interval after the completion of one or more related Order that this Order
can be started or completed

Name Type Multiplicity Description

73 /80



Name Type Multiplicity

coordinatedActionDelay* Duration 1

Description

The period
of time for
which the
coordinated
action is

delayed.

coordinationDependency* OrderltemCoordinationDependencyType 1

A

dependency
between the
Order and a

related
Order

orderld* string 1

7.2.6.2. Type OrderItemCoordinatedAction

Specifies
Order that
1s to be
coordinated
with this
Order.

Description: The interval after the completion of one or more related Order Items that this

Order Item can be started or completed

Name Type Multiplicity

coordinatedActionDelay* Duration 1

Description

The period
of time for
which the
coordinated
action is

delayed.

coordinationDependency* OrderltemCoordinationDependencyType 1

A
dependency
between the
Order Item
and a
related
Order Item

74 /80



Name

Type

Multiplicity Description

itemId*

string

Specifies
Order Item
that is to be
coordinated
with this
Order Item.

7.2.6.2. enun OrderItemCoordinationDependencyType

Description: Possible values of the Order Item Coordination Dependency

OrderIltemCoordinationDependencyType Description

startToStart

Work on the Specified Order Item can only
be started after the Coordinated Order Items
are started

startToFinish

The Coordinated Order Items must
complete before work on the Specified

Order Item begins

finishToStart

Work on the Related Order Items begins
after the completion of the Specified Order
Item

finishToFinish

7.2.6.11. Type Note BusSof

Work on the Related Order Items completes
at the same time as the Specified Order

Item

Description: Extra information about a given entity. Only useful in processes involving

human interaction. Not applicable for an automated process.

Name Type Multiplicity Description
author* string 1 Author of the note
date* date-time 1 Date of the note
Identifier of the note within its containing entity
id* string 1 (may or may not be globally unique, depending on
provider implementation)
source* BusSofType 1 Indicates if this Note was added by BUS or SOF.
text* string 1 Text of the note

75/80



7.2.6.13. Type RelatedContactInformation

Description: Contact information of an individual or organization playing a role for this
Order Item. The rule for mapping a represented attribute value to a roie is to use the

lowerCamelCase pattern

Name Type Multiplicity Description

emailAddress* string 1 Email address

name* string 1 Name of the contact

number* string 1 Phone number

numberExtension string 0..1 Phone number extension

o ) The organization or company

organization string 0..1
that the contact belongs to
Identifies the postal address of

postalAddress FieldedAddressValue 0..1 the person or office to be
contacted.

. A role the party plays in a given
role* string 1

context.

The ro1e attribute is used to provide a reason the particular party information is used. It can
result from business requirements (e.g. SOF Contact Information) or from the Service

Specification requirements.

The rule for mapping a represented attribute value to a roe is to use the lowerCamelCase

pattern e.g.

e BUS Contact: role equal 1O busInformation
¢ SOF Contact: role equal tO sofcontact

7.2.6.14. Type TerminationError

Description: This indicates an error that caused an Item to be terminated. The code and
propertyPath should be used like in Error422.

Name Type Description

76 /80



Name Type

code Error422Code

Description

One of the following error codes: - missingProperty: The
property the SOF has expected is not present in the
payload - invalidValue: The property has an incorrect
value - invalidFormat: The property value does not comply
with the expected value format - referenceNotFound: The
object referenced by the property cannot be identified in
the SOF system - unexpectedProperty: Additional
property, not expected by the SOF has been provided -
tooManyRecords: the number of records to be provided in
the response exceeds the SOF's threshold. - otherlssue:
Other problem was identified (detailed information

provided in a reason)

propertyPath string

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

value string

7.2.6.15. enum TimeUnit

Text to describe the reason of the termination.

Description: Represents a unit of time.

Value

calendarMonths

calendarDays

calendarHours

calendarMinutes

businessDays

businessHours

businessMinutes

7.3. Notification API Data model

Figure 22 presents the Service Order Management Notification data model.

77 /80



® serviceorderEventType

© event :
serviceOrderCreateEvent
eventld®: string serviceOrderStateChangeEvent
eventTime* date-time serviceOrderitemStateChangeEvent

serviceOrderinformationRequiredEvent

© ServiceOrderEvent

eventType* ServiceOrderEventType
[ )

event

1
Y

© ServiceCrderEventPayload

orderltemid: string
id* string
href: string

Figure 22. Service Order Management Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Multiplicity Description
eventld* string 1 Id of the event
eventTime* date-time 1 Date-time when the event occurred

7.3.2. Type ServiceOrderEvent

Description:

Inherits from:

e Event
Name Type Multiplicity Description
eventType* ServiceOrderEventType 1 Indicates the type of the event.
) A reference to the Service Order
event* ServiceOrderEventPayload 1

that is source of the notification.

7.3.3. Type ServiceOrderEventPayload

Description: The identifier of the Service Order and Order Item being subject of this event.

78 /80



Name Type Multiplicity Description

ID of the Service Order Item (within the Service
orderltemld string O..1 Order) which state change triggered the event.
Mandatory for “serviceOrderltemStateChangeEvent'.

1d* string 1 ID of the Service Order

href string 0..1 Hyperlink to access the Service Order

7.3.4. e ServiceOrderEventType
Description: Indicates the type of Service Order event.

Value

serviceOrderCreateEvent

serviceOrderStateChangeEvent

serviceOrderltemStateChangeEvent

serviceOrderInformationRequiredEvent

8. References

e JSON Schema draft 7, JSON Schema: A Media Type for Describing JSON Documents
and associated documents, by Austin Wright and Henry Andrews, March 2018.
Copyright © 2018 IETF Trust and the persons identified as the document authors. All
rights reserved.

e MEF 10.4, Subscriber Ethernet Services Attributes, December 2018

e MEF 26.2, External Network Network Interface (ENNI) and Operator Service
Attributes, August 2016

e MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework, February 2021

e MEF 61.1, IP Service Attributes, May 2019

e MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and
Mean Time to Repair Performance Metric, July 2022

e MEF 70, SD-WAN Service Attributes and Services, July 2019

e MEF 79, Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019

e MEF 79.0.1, Amendment to MEF 79: Address, Service Site, and Product Offering
Qualification Management, Requirements, and Use Cases, December 2020

e MEF 79.0.2, Amendment to MEF 79: Address Validation, July 2021

[MEF W100], LSO Legato Service Specification - SD-WAN Schema Guide

[MEF W101], LSO Legato Service Specification - Carrier Ethernet Schema Guide

[MEF W102], LSO Legato Service Specification - IP/IP-VPN Schema Guide

79/80


https://json-schema.org/specification-links.html#draft-7
https://www.mef.net/wp-content/uploads/2018/12/MEF-10-4.pdf
https://www.mef.net/wp-content/uploads/2016/08/MEF-26-2.pdf
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
https://www.mef.net/wp-content/uploads/2019/05/MEF-61-1.pdf
https://www.mef.net/wp-content/uploads/MEF-61.1.1.pdf
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf
https://www.mef.net/wp-content/uploads/2019/11/MEF-79.pdf
https://www.mef.net/wp-content/uploads/2020/12/MEF-79-0-1.pdf
https://www.mef.net/wp-content/uploads/MEF-79.0.2.pdf

MEF 121, LSO Cantata and LSO Sonata Address Management API - Developer Guide,
May 2022

MEF 122, LSO Cantata and LSO Sonata Site Management API - Developer Guide,
May 2022

MEF 128, LSO API Security Profile, July 2022

RFC2119, Key words for use in RFCs to Indicate Requirement Levels, by S. Bradner,
March 1997

RFC3986 Uniform Resource Identifier (URI): Generic Syntax, January 2005
RFC8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, by B.
Leiba, May 2017, Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.

RFC7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, June 2014
https://tools.ietf.org/html/rfc7231

TMF630 TMF630 API Design Guidelines 4.2.0

TMF641 TMF641 Service Order Management API REST Specification v4.1.0

80/80


https://www.mef.net/wp-content/uploads/MEF-121.pdf
https://www.mef.net/wp-content/uploads/MEF-122.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc7231
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/
https://www.tmforum.org/resources/specification/tmf641-service-ordering-api-user-guide-v4-1-0/

