
1 / 80

Working Draft
MEF W99 v0.91

LSO Service Ordering Management API -
Developer Guide

This draft represents MEF work in progress and is subject to change.

January 2023
EXPORT CONTROL: This document contains technical data. The download, export,

re-export or disclosure of the technical data contained in this document may be
restricted by applicable U.S. or foreign export laws, regulations and rules and/or

applicable U.S. or foreign sanctions ("Export Control Laws or Sanctions"). You agree
that you are solely responsible for determining whether any Export Control Laws or

Sanctions may apply to your download, export, reexport or disclosure of this
document, and for obtaining (if available) any required U.S. or foreign export or

reexport licenses and/or other required authorizations.

2 / 80

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any
recipient and is believed to be accurate as of its publication date. Such information is subject
to change without notice and MEF Forum (MEF) is not responsible for any errors. MEF
does not assume responsibility to update or correct any information in this publication. No
representation or warranty, expressed or implied, is made by MEF concerning the
completeness, accuracy, or applicability of any information contained herein and no liability
of any kind shall be assumed by MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the
recipient or user of this document. MEF is not responsible or liable for any modifications to
this document made by any other party.

The receipt or any use of this document or its contents does not in any way create, by
implication or otherwise:

(a) any express or implied license or right to or under any patent, copyright, trademark
or trade secret rights held or claimed by any MEF member which are or may be
associated with the ideas, techniques, concepts or expressions contained herein; nor

(b) any warranty or representation that any MEF member will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

(c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications or recommendations will
be voluntary, and no Member shall be obliged to implement them by virtue of participation
in MEF Forum. MEF is a non-profit international organization to enable the development
and worldwide adoption of agile, assured and orchestrated network services. MEF does not,
expressly or otherwise, endorse or promote any specific products or services.

Copyright

© MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall
contain the following statement: "Reproduced with permission of MEF Forum." No user of
this document is authorized to modify any of the information contained herein.

3 / 80

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1. Description
4.2. Conventions in the Document
4.3. Relation to Other Documents
4.4. Approach
4.5. High-Level Flow

5. API Description
5.1. High-level Use Cases
5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Ordering API Endpoints
5.2.2. BUS Service Ordering API Endpoints

5.3. Integration of Service Specifications into Service Order Management API
5.4. Sample Service Specification
5.5. Model structure and validation
5.6. Security Considerations

6. API Interactions and Flows
6.1. Use case 1: Create Service Order

6.1.1. Interaction flow
6.1.2. Create Service Order Request
6.1.3. Create Service Order Response
6.1.4. Use Case 1a: Service Order Item to Add Service
6.1.5. Use case 1b: Service Order Item to Modify Existing Service
6.1.6. Use case 1c: Service Order Item to Delete Existing Service
6.1.7. Service Order and Service Order Items State Machine
6.1.8. Specifying Place Details

6.1.8.1. Fielded Address
6.1.8.2. Formatted Address
6.1.8.3. Geographic Point
6.1.8.4. Geographic Address Label
6.1.8.5. Geographic Site Reference
6.1.8.6. Geographic Address Reference

6.2. Use Case 2: Retrieve List of Service Orders
6.3. Use Case 3: Retrieve Service Order by Service Order Identifier
6.4. Use case 4: Register for Notifications
6.5. Use case 5: Send Notification
6.6. Service Lifecycle

4 / 80

7. API Details
7.1. API patterns

7.1.1. Indicating errors
7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enum Error400Code
7.1.1.4. Type Error401
7.1.1.5. enum Error401Code
7.1.1.6. Type Error403
7.1.1.7. enum Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error422
7.1.1.10. enum Error422Code
7.1.1.11. Type Error500

7.2. Management API Data model
7.2.1. ServiceOrder

7.2.1.1 Type ServiceOrder_Common
7.2.1.2. Type ServiceOrder_Create
7.2.1.3. Type ServiceOrder
7.2.1.4. enum ServiceOrderStateType
7.2.1.5. Type ServiceOrderRef
7.2.1.6. Type ServiceOrderRelationship

7.2.2. Service Order Item
7.2.2.1 Type ServiceOrderItem_Common
7.2.2.2. Type ServiceOrderItem_Create
7.2.2.3. Type ServiceOrderItem
7.2.2.4. enum ServiceActionType
7.2.2.5. Type ServiceOrderItemRef
7.2.2.6. Type ServiceOrderItemRelationship

7.2.3. Service representation
7.2.3.1. Type ServiceValue
7.2.3.2. Type MefServiceConfiguration
7.2.3.3. Type ServiceRelationship
7.2.3.3. enum ServiceStateType
7.2.3.3. Type ServiceRef

7.2.4. Place representation
7.2.4.1. Type RelatedPlaceRefOrValue
7.2.4.2. Type FieldedAddress
7.2.4.3. Type FieldedAddressValue
7.2.4.4. Type FormattedAddress
7.2.4.5. Type GeographicPoint
7.2.4.6. Type GeographicAddressLabel

5 / 80

7.2.4.7. Type GeographicSubAddress
7.2.4.8. Type GeographicSubAddressUnit
7.2.4.9. Type GeographicAddressRef
7.2.4.10. Type GeographicSiteRef

7.2.5. Notification registration
7.2.5.1. Type EventSubscriptionInput
7.2.5.2. Type EventSubscription

7.2.6. Common
7.2.6.1. Type OrderCoordinatedAction
7.2.6.2. Type OrderItemCoordinatedAction
7.2.6.2. enum OrderItemCoordinationDependencyType
7.2.6.11. Type Note_BusSof
7.2.6.13. Type RelatedContactInformation
7.2.6.14. Type TerminationError
7.2.6.15. enum TimeUnit

7.3. Notification API Data model
7.3.1. Type Event
7.3.2. Type ServiceOrderEvent
7.3.3. Type ServiceOrderEventPayload
7.3.4. enum ServiceOrderEventType

8. References

6 / 80

List of Contributing Members

The following members of the MEF participated in the development of this document and
have requested to be included in this list.

Member

Table 1. Contributing Members

7 / 80

1. Abstract

This standard is intended to assist the implementation of the Application Programming
Interfaces (APIs) for the Service Provisioning function of the Service Orchestration
Functionality at the LSO Legato Interface Reference Point. The Legato Interface Reference
Point is defined in the MEF 55.1 [MEF55.1] at the interface between the Business
Application Systems layer and Service Orchestration Functionality layer.

This Standard normatively incorporates the following OpenAPI 3.0 definitions by reference
as if they were part of this document, from the MEF-GIT GitHub repository working_draft
branch:

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK

serviceApi\order\serviceOrderingManagement.api.yaml

serviceApi\order\serviceOrderingNotification.api.yaml

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions to terms are found in other documents. In these cases, the third column is used to
provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the following documents are included in this document by
reference, and are not repeated in the tables below.

MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework February 2021 [MEF 55.1]

Term Definition Source

API Endpoint

The endpoint of a communication channel (the
complete URL of an API Resource) to which the
HTTP-REST requests are addressed in order to
operate on the API Resource

rapidapi.com
This document

API Resource

A REST Resource. In REST, the primary data
representation is called Resource. In this document,
API Resource is defined as a OAS SchemaObject
with specified API Endpoints

restfulapi.net
This document

Business
Applications

The Service Provider functionality supporting
Business Management Layer functionality

MEF 55.1

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK
https://rapidapi.com/blog/api-glossary/endpoint/
https://restfulapi.net/resource-naming/

8 / 80

Term Definition Source

OAS
Document

An API description document in the OpenAPI
specification format.

openapis.org

OpenAPI
The OpenAPI 3.0 Specification, formerly known as
the Swagger specification is an API description
format for REST APIs.

spec.openapis.org

Operation
An interaction between the BUS and SOF, potentially
involving multiple back and forth transactions.

This document

SchemaObject
The construct that allows the definition of input and
output data types. These types can represent object
classes, as well as primitives and arrays. specification

spec.openapis.org

Service
Orchestration
Functionality

The set of service management layer functionality
supporting an agile framework to streamline and
automate the service lifecycle in a sustainable fashion
for coordinated management supporting design,
fulfillment, control, testing, problem management,
quality management, usage measurements, security
management, analytics, and policy-based
management capabilities providing coordinated end-
to-end management and control of Services

MEF 55.1

Table 2. Terminology

Term Definition Source

API
Application Programming Interface. In this document, API is used
synonymously with REST API.

This
document

BUS Business Applications MEF 55.1

IRP Interface Reference Point
This
document

OAS OpenAPI Specification openapis.org

SOF Service Orchestration Functionality MEF 55.1

Table 3. Abbreviations

https://www.openapis.org/faq/style-guide
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3#schema-object
https://www.openapis.org/faq/style-guide

9 / 80

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC 2119], RFC 8174 [RFC8174]) when, and only when, they appear in all
capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that
MUST be followed if the condition(s) following the "<" have been met. For example, "
[CR1]<[D38]" indicates that Conditional Mandatory Requirement 1 must be followed if
Desirable Requirement 38 has been met. A paragraph preceded by [CDb]< specifies a
Conditional Desirable Requirement that SHOULD be followed if the condition(s) following
the "<" have been met. A paragraph preceded by **[COc]<**specifies a Conditional
Optional Requirement that MAY be followed if the condition(s) following the "<" have
been met.

10 / 80

4. Introduction

This standard specification document describes the Application Programming Interface
(API) for Service Order Management functionality of the LSO Legato Interface Reference
Point (IRP) as defined in the MEF 55.1 Lifecycle Service Orchestration (LSO): Reference
Architecture and Framework [MEF55.1]. The LSO Reference Architecture is shown in
Figure 1 with the IRP highlighted.

Figure 1. The LSO Reference Architecture

4.1. Description

This standard is scoped to cover APIs for following Service Orchestration Functionalities:

Service Ordering and Fulfillment
Includes Service Configuration & Activation functions

Service Notification
Includes Event Subscription/Hub and Listener notification functions

Other Service Orchestration Functionalities not addressed in this standard include (but not
limited to):

Service Inventory Management
Service Catalog Management
Service Qualification
Service Activation Testing
Service Problem Management
Service Quality Management
Service Usage measurements and Reporting (in support of billing)
License Management

11 / 80

This document primarily supports the requirements defined in section 8.2 (Order Fulfillment
and Service Control) of MEF 55.1, LSO Reference Architecture for interactions over the
Legato interface within a single operator. Both the Business Applications (BUS) and Service
Orchestration Functionality (SOF) systems use the information contained within this
document.

This standard is intended to support the design of API implementations that enable inter-
operable SOF operations (in scope of this standard) across the Legato IRP.

This standard is based on TMF Open API (v4.1.0) for Service Ordering (TMF 641)
TMF641.

4.2. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. ServiceOrder).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality
markers are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next
to their names.
In UML sequence diagrams {{variable}} notation is used to indicate a variable to be
substituted with a correct value.

4.3. Relation to Other Documents

The API definition builds on TMF641 Service Order Management API REST Specification
v4.1.0 [TMF641]. Service Order Use Cases must support the use of any of MEF service
specifications as payload, in particular those defined in:

LSO Legato Service Specification - SD-WAN Schema Guide in MEF W100 [MEF
W100].
LSO Legato Service Specification - Carrier Ethernet Schema Guide in MEF W101
[MEF W101].
LSO Legato Service Specification - IP/IP-VPN Schema Guide in MEF W102 [MEF
W102].

4.4. Approach

As presented in Figure 2. the Legato API frameworks consist of three structural
components:

12 / 80

Generic API framework
Service-independent information (Function-specific information and Function-specific
operations)
Service-specific information (MEF service specification data model)

Figure 2. Legato API Structure

The essential concept behind the framework is to decouple the common structure,
information, and operations from the specific service information content.
Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Legato APIs.
Secondly, the service-independent information of the framework focuses on a model of a
particular Legato functionality and is agnostic to any of the service specifications. For
example, this standard is describing the Service Order model and operations that allow
ordering of any service that is aligned with either MEF or custom service specifications.
Finally, the service-specific information part of the framework focuses on MEF service
specifications that define business-relevant attributes and requirements for trading MEF
subscriber and MEF operator services.

This Developer Guide is not defining MEF service specifications but can be used in
combination with any service specifications defined by or compliant with MEF. Examples
of MEF Service Model (MSM) schema include:

MEF W100: SD-WAN Services based on MEF 70 [MEF70]
MEF W101: Carrier Ethernet services based on MEF 10.4 [MEF10.4] and MEF 26.2
[MEF26.2]
MEF W102: IP Services based on MEF 61.1 [MEF61.1] and MEF 61.1.1 [MEF61.1.1]

Figure 3 presents the relations between the Legato API components and the Service Model.
A Service Order contains one or more Service Order Items. Each Service Order Item is an
intent of action on a given Service (add, modify or delete). A Service references Service
Specification to identify the Service Type. The Service specification points to the schema of
the Service, as provided by (but not limited to) MEF Standard. The Service also has the

13 / 80

MefServiceConfiguration attribute, which provides an instance of the configuration of a given
Service (attributes of MEF Service model populated with desired values)

Figure 3. Legato and MSM Schema

4.5. High-Level Flow

The Legato Service Catalog, Service Order, Service Inventory, and Service Notification
APIs in essence allow the BUS to request SOF to configure and activate one or more
services as part of an order fulfillment process. Figure 4 presents a high-level flow of use of
all of the above-mentioned APIs.

14 / 80

Figure 4. High-Level Flow

The following steps describe the high-level flow:

The BUS system registers for notifications.
As part of the ordering flow, the BUS system receives the product order (through
Cantata or Sonata) which triggers the fulfillment processes in the BUS system.
The BUS system first queries the Service Catalog to retrieve the ServiceSpecifications
supported by the SOF
Note1: Service Catalog and the process of mapping and decomposing a product order
to identify appropriate ServiceSpecifications is out of scope for this standard. Note2: The

15 / 80

mechanisms to design, construct and populate the ServiceSpecifications into SOF Service
Catalog is out of scope for this standard.

Each specific instance of a ServiceSpecification (retrieved from the Service Catalog)
minimally contains a reference to target Service schema. A Service schema describes
the set of properties that characterize that service and are exchanged over Legato
IRP.

During the service configuration and activation phase, the BUS system uses the Service
Order API to instantiate the Service utilizing the ServiceSpecifications (retrieved from the
Service Catalog).

The BUS achieves this by creating a ServiceOrder which contains a one or more
ServiceOrderItems.
Each ServiceOrderItem carries some ServiceConfiguration data and the type of operation
(add/modify/delete) to be performed (instructions to SOF).
The SOF utilizes Service schema referenced in the ServiceSpecification to validate the
ServiceConfiguration data passed in by the BUS.
The ServiceOrder / ServiceOrderItem is processed by the SOF as per the state transition
rules described in 6.1.7. Service Order and Service Order Items State Machine
The SOF reports the ServiceOrder and ServiceOrderItem state changes
The SOF performs the actions (add/modify/delete) specified in a ServiceOrderItem on the
specified target Service instance in the Service Inventory as per the state transition
rules described in 6.6. Service Lifecycle
The SOF reports the Service instance state changes

The BUS system uses the same Service Order API to create new Service instances as well
as update existing Service instance's properties or trigger state transitions, and delete
existing Service instance.

16 / 80

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it gives
an explanation of the design pattern that is used to combine service-agnostic and service-
specific parts of API payloads. Finally, payload validation and API security aspects are
discussed.

5.1. High-level Use Cases

Figure 5. presents a high-level use case diagram. It aims to help understand the endpoint
mapping. Use cases are described extensively in chapter 6

Figure 5. Use cases

5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Ordering API Endpoints

Base URL: https://{{serverBase}}:{{port}}{{?/sof_prefix}}/mefApi/legato/serviceOrderingManagement/v5/

The following API Endpoints are used by BUS to create and query for ServiceOrder instances
and to subscribe/unsubscribe to ServiceOrder notifications. The endpoints and corresponding
data model are defined in serviceApi/order/serviceOrderingManagement.api.yaml

17 / 80

API Endpoint Description
Use Case
mapping

API Endpoint Description
Use Case
mapping

POST /serviceOrder

A request initiated by the BUS to create new Service
instances as well as update Service instance's
properties or trigger their state transitions and/or
delete existing Service instance.

UC 1: Create
Service Order

GET /serviceOrder

A request initiated by the BUS to retrieve a list of
ServiceOrders from the service order management
system in SOF, that match the filter criteria provided
as query parameters

UC 2: Retrieve
List of Service
Orders

GET

/serviceOrder/{{id}}

A request initiated by the BUS to retrieve a specific
ServiceOrder from the service order management system
in SOF, that match the id provided as path parameter

UC 3: Retrieve
Service Order
by Service
Order Identifier

POST /hub
A request initiated by the BUS to instruct the SOF to
send notification

UC 4: Register
for Notifications

GET /hub/{{id}}

A request initiated by the BUS to retrieve a specific
EventSubscription from the service order management
system in SOF, that matches the provided id provided
as path parameter

UC 4: Register
for Notifications

DELETE /hub/{{id}}
A request initiated by the BUS to instruct the SOF to
stop sending notifications

UC 4: Register
for Notifications

Table 4. SOF Service Ordering API Endpoints

[R1] SOF MUST support all API endpoints listed in Table 4.

5.2.2. BUS Service Ordering API Endpoints

Base URL: https://{{serverBase}}:{{port}}{{?/bus_prefix}}/mefApi/legato/serviceOrderingNotification/v5/

The following API Endpoints are used by SOF to post notifications to registered BUS
listeners. The endpoints and corresponding data model are defined in
serviceApi/order/serviceOrderingNotification.api.yaml

API Endpoint Description
Use Case
mapping

POST /listener/serviceOrderCreateEvent

A request initiated by the SOF to
notify BUS on ServiceOrder instance
creation

5. Send
Notifications

18 / 80

API Endpoint Description
Use Case
mapping

POST

/listener/serviceOrderInformationRequiredEvent

A request initiated by the SOF to
notify BUS that additional
information is required for given
ServiceOrder instance

5. Send
Notifications

POST /listener/serviceOrderStateChangeEvent

A request initiated by the SOF to
notify BUS on ServiceOrder instance
state change

5. Send
Notifications

POST

/listener/serviceOrderItemStateChangeEvent

A request initiated by the SOF to
notify BUS on ServiceOrderItem
instance state change

5. Send
Notifications

Table 5. BUS Service Ordering API Endpoints

[O1] The BUS MAY support API endpoints listed in Table 5.

[O2] The BUS MAY register to receive service notifications.

[R2] The SOF MUST support sending notification to API endpoints listed in Table 5 to
registered BUS.

5.3. Integration of Service Specifications into Service Order
Management API

Service specifications are defined using JsonSchema (draft 7) format JSON Schema draft 7
and are integrated into the ServiceOrder using the TMF extension pattern.

The extension hosting type in the API data model is MefServiceConfiguration. The @type attribute of
that type must be set to a value that uniquely identifies the service specification. A unique
identifier for MEF standard service specifications is in URN format and is assigned by
MEF. This identifier is provided as root schema $id and in service specification
documentation. Use of non-MEF standard service definitions is allowed. In such a case the
schema identifier must be agreed upon between the BUS and the SOF.

The example below shows a header of a Service Specification schema, which is describing
the IP Uni, where "$id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all is the above-mentioned URN:

"$schema": http://json-schema.org/draft-07/schema#
"$id": $id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all
title: MEF LSO Legato - IP UNI Specification

Service specifications are provided as Json schemas without the MefServiceConfiguration context.

19 / 80

Service-specific attributes are introduced via the ServiceValue (defined by the BUS). This
entity has the serviceConfiguration attribute of type MefServiceConfiguration which is used as an
extension point for service-specific attributes.

Implementations might choose to integrate selected service specifications to data model
during development. In such a case an integrated data model is built and service
specifications are in an inheritance relationship with MefServiceConfiguration as described in the
OAS specification. This pattern is called Static Binding. The SDK is additionally shipped
with a set of API definitions that statically bind all service-related APIs (POQ, Quote,
Order, Inventory) with all corresponding service specifications available in the release. The
snippets below present an example of a static binding of the envelope API with several MEF
service specifications, from both MefServiceConfiguration and service specification point of view:

MefServiceConfiguration:
 description:
 MefServiceConfiguration is used as an extension point for MEF-specific
 service payload. The `@type` attribute is used as a discriminator
 discriminator:
 mapping:
 urn:mef:lso:spec:legato:ip-enni:v0.0.1:all: '#/components/schemas/IpEnni'
 urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all: '#/components/schemas/IpvcEndpoint'
 urn:mef:lso:spec:legato:ip-uni:v0.0.1:all: '#/components/schemas/IpUni'
 urn:mef:lso:spec:legato:ethernet-uni-access-link-trunk:0.0.1:all:
'#/components/schemas/EthernetUniAccessLinkTrunk'
 urn:mef:lso:spec:legato:ip-uni-access-link:0.0.1:all: '#/components/schemas/IpUniAccessLink'
 urn:mef:lso:spec:legato:ipvc:v0.0.1:all: '#/components/schemas/Ipvc'
 urn:mef:lso:spec:legato:ip-uni-access-link-trunk.0.1:all: '#/components/schemas/IpUniAccessLinkTrunk'
 urn:mef:lso:spec:legato:ip-enni-link:v0.0.1:all: '#/components/schemas/IpEnniLink'
 propertyName: '@type'
 properties:
 '@type':
 description:
 The name of the type, defined in the JSON schema specified above, for
 the service that is the subject of the Request. The named type must be
 a subclass of MefServiceConfiguration.
 type: string

IpvcEndpoint:
 allOf:
 - $ref: '#/components/schemas/MefServiceConfiguration'
 - description:
 'An IPVC End Point is a logical entity at an EI, to which a subset of
 packets that traverse the EI is mapped. Reference MEF 61.1 Section 7.4
 IP Virtual Connections and IPVC End Points.'

Alternatively, implementations might choose not to build an integrated model and choose a
different mechanism allowing runtime validation of service-specific fragments of the
payload. The system can validate a given service against a new schema without
redeployment. This pattern is called Dynamic Binding.

Regardless of chosen implementation pattern, the HTTP payload is exactly the same. Both
implementation approaches must conform to the requirements specified below.

[R3] MefServiceConfiguration type is an extension point that MUST be used to integrate service
specifications' properties into a request/response payload.

20 / 80

[R4] The @type property of MefServiceConfiguration MUST be used to specify the type of the
extending entity.

[R5] Service attributes specified in the payload must conform to the service specification
specified in the @type property.

Figure 6. The Extension Pattern with Sample Service-Specific Extensions

Figure 6 presents two MEF <<ServiceSpecifications>> that represent IPVC and IPVC Endpoint
services. When these services are used as a Service Order payload the @type of
MefServiceConfiguration takes "urn:mef:lso:spec:legato:ipvc:v0.0.1:all" or "urn:mef:lso:spec:legato:ipvc-
endpoint:v0.0.1:all" value to indicate which service specification should be used to interpret a
set of service-specific attributes included in the payload. An example of a service definition
inside the ServiceOrderItem is presented in Section 6.1.4.

The all suffix after the service type name in the URN comes from the approach that the
service schemas may differ depending on the function (POQ, Quote, Order, or Inventory)
they are used with. The value all means that one version of the schema is shared by all
functions.

5.4. Sample Service Specification

The Legato SDK contains service specification definitions, from which IPVC and IPVC
End Point are used in the payload samples in this section. The schemas are located in the
SDK package at:

serviceSchema\ip\ipvc.yaml

serviceSchema\ip\ipvcEndPoint.yaml

The service specification data model definitions are available as JsonSchema (version draft
7) documents. Figures 7 and 8 depict simplified UML views on these data models in which:

21 / 80

the mandatory attributes are marked with *,
the mandatory relations have a cardinality of 1 or 1..*,
some relations and attributes that are not essential to the understanding of the service
specification model are omitted.

The red color in figures 7 and 8 below highlights the data model of services. Some parts of
the model are skipped for examples clarity. This is denoted by the <<skipped>> text in diagrams
and in json snippets later in the document. Please note that this document uses service
specifications just for the sake of example on how to use the Service Order API together
with the Service payload. The detailed examples of any service specification are not in the
scope of this document.

Figure 7. A simplified view of IPVC service specification data model

Figure 8. A simplified view of IPVC End Point service specification data model

Service specifications define several service-related and envelope-related requirements. For
example:

for an IPVC End Point service two mandatory relationships must be specified, one
toward the IPVC (IPUNI_ENDPOINT_OF_IPVC), and a second towards the IP UNI (CONNECTS_TO_IPUNI)

22 / 80

for the add action.
in the case of a modify action, service relationships must have the same value as in the add
action. They must not be changed
for an IP UNI Access Link Trunk service a place relationship (INSTALL_LOCATION) must be
specified
in the case of a modify action, place relationships must have the same value as in the add
action. They must not be changed

In case, some of these requirements are violated the SOF returns an error response to the
BUS that indicates specific functional errors. These errors are listed in the response body (a
list of Error422 entries) for HTTP 422 response.

Figure 9. Example use case configuration

Figure 9 shows a setup of service configuration used by the example. The Advanced Internet
Access is built from 5 services:

IPVC
IPVC End Point
IP UNI
IP UNI Access Link
IP UNI Access Link Trunk

The example assumes a situation, where IP UNI, IP UNI Access Link, and IP UNI Access
Link Trunk are already provisioned and are available in Service Inventory. They are marked
with black lines. The Service Order includes requests to create 2 services: IPVC and IPVC
End Point (marked with red lines). This means there are 2 Service Order Items with
action=add. As mentioned earlier, there are 2 mandatory relations to be provided with IPVC
End Point. In this case:

IPUNI_ENDPOINT_OF_IPVC is provided with the use of serviceOrderItemRelationship as pointing to the
Ipvc being part of the same Service Order,

23 / 80

CONNECTS_TO_IPUNI is provided with the use of serviceRelationship as pointing to an IpUni service
that is already provisioned and available in Service Inventory.

5.5. Model structure and validation

The structure of the payloads exchanged via Legato Service API endpoints is defined using:

OpenAPI version 3.0 for the service-agnostic part of the payload
JsonSchema (draft 7) for the service-specific part of the payload

[R6] Implementations MUST use payloads that conform to these definitions.

[R7] A service specification may define additional consistency rules and requirements that
MUST be respected by implementations. These are defined for:

required relation type, multiplicity to other items within the same or another Service
Order request
required relation type, multiplicity to entities in the SOF's service inventory
related contact information roles that are to be defined at the Service Order Item level
relations to places (locations) and their roles that are to be defined at the order item
level

5.6. Security Considerations

Although the Legato IRP is internal to a Service Provider/Operator business boundary, it is
expected that some minimal security mechanisms are in place for any communication over
this IRP. There must also be authorization mechanisms in place to control what a particular
BUS or SOF is allowed to do and what information may be obtained. However, the
definition of the exact security mechanism and configuration is outside the scope of this
document. The LSO Security mechanisms are defined by MEF 128 LSO API Security
Profiles [MEF128].

24 / 80

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It
starts with Table 6 presenting a list and short description of all business use cases then
presents the variants of end-to-end interaction flows, and in the following subchapters
describes the API usage flow and examples for each of the use cases.

Use
Case
#

Use Case
Name

Use Case Description

1
Create
Service
Order

A request initiated by the BUS to order a new service or service
component(s). A Service Order must contain at least one Service
Order Item (Use Case # 1-a, 1-b, or 1-c) as shown below. A Service
Order may contain more than one Service Order Item and Service
Order Items within a Service Order are not required to have
relationships between them.

1-a

Service
Order Item
to Add
Service

Service Order Item adds a new Service.

1-b

Service
Order Item
to Modify
Existing
Service

Service Order Item modifies attributes of a specific active Service.

1-c

Service
Order Item
to Delete
Existing
Service

Service Order Item disconnects an active Service.

2
Retrieve List
of Service
Orders

A request initiated by the BUS to retrieve a list of Service Orders
that match the provided filter criteria

3

Retrieve
Service
Order by
Service
Order
Identifier

A request initiated by the BUS to retrieve the details associated
with a specific Service Order with the given Service Order
Identifier.

25 / 80

Use
Case
#

Use Case
Name

Use Case Description

4
Register for
Notifications

The BUS requests to subscribe to notifications.

5
Send
Notification

A notification initiated by the SOF to the BUS

Table 6. Use cases description

6.1. Use case 1: Create Service Order

This is the initial step for Service Order processing.

6.1.1. Interaction flow

The flow of this use case is very simple and is described in Figure 10.

Figure 10. Use Case 1 - Service Order create request flow

The BUS sends a request with a ServiceOrder_Create type in the body. The SOF performs request
validation, assigns an id, and returns ServiceOrder type in the response body, with a state set to
acknowledged. From this point, the Service Order is ready for further processing. The BUS can
track the progress of the process either by subscribing for notifications or by periodically
polling the ServiceOrder. The two patterns are presented in the following two diagrams.

26 / 80

Figure 11. Service Order progress tracking - Notifications

Figure 12. Service Order progress tracking - Polling

Note: The context of notifications is not a part of the considered use case itself. It is
presented to show the big picture of end-to-end flow. This applies also to all further use case
flow diagrams with notifications.

so to all further use case flow diagrams with notifications.

6.1.2. Create Service Order Request

Figure 13 presents the most important part of the data model used during the Create Service
Order request (POST /serviceOrder) and response. The model of the request message -

27 / 80

ServiceOrder_Create is a subset of the ServiceOrder model and contains only attributes that can (or
must) be set by the BUS. The SOF then enriches the entity in the response with additional
information.

Note: ServiceOrder_Create and ServiceOrderItem_Create are entities used by the BUS to make a request.
ServiceOrder and ServiceOrderItem are entities used by the SOF to provide a response. The request
entities have a subset of attributes of the response entities. Thus for visibility of these shared
attributes ServiceOrder_Common and ServiceOrderItem_Common have been introduced. Though, these are
not to be used directly in the exchange.

A ServiceOrderItem_Create defines details of the service(s) being subject of the ordering (in
ServiceValue structure) and allows for the definition of additional information like related
parties (RelatedContactInformation) or relations to other items (ServiceOrderItemRelationship,
ServiceOrderRelationship).

ServiceValue allows for the introduction of service-specific properties as the Service Order
payload. The extension mechanism is described in detail in Section 5.3. ServiceValue may be
also used to specify relations to places (using specializations of RelatedPlaceOrValue, as described
in Section 6.1.8.) and/or to a service that exists in the SOF's inventory (using
ServiceRelationship).

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

Figure 13. Service Order Key Entities

To send a Service Order request the BUS uses the createServiceOrder operation from the API:
POST /serviceOrder. For clarity, some of the Service Order payload's attributes might be omitted

28 / 80

to improve examples' readability. The ServiceOrder_Create is a simple structure that is common
for all types of requests (add, modify, delete), most of the information is in the
ServiceOrderItem_Create.

Service Order Create Request

{
 "description": "Example Service Order",
 "externalId": "busOrder-101",
 "requestedCompletionDate": "2023-01-28T20:45:23.796Z",
 "requestedStartDate": "2023-01-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 }
],
 "note": [
 {
 "author": "John Example",
 "date": "2022-12-28T20:45:23.796Z",
 "id": "note-001",
 "source": "bus",
 "text": "This is an example text"
 }
],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "add",
 "service": {
 "description": "IP Virtual Connection",
 "externalId": "BUS_IPVC-0001",
 "serviceType": "Internet Access",
 "name": "IPVC",
 "state": "feasibilityChecked",
 "relatedContactInformation": [
 {
 "emailAddress": "BUS.ServiceOrderItemContact@example.com",
 "name": "BUS Service Order Item Contact",
 "number": "+12-345-678-90",
 "role": "busServiceOrderItemContact"
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "ipvcIdentifier": "IPVC-0000-0001",
 "ipvcTopology": "CLOUD_ACCESS",
 "packetDelivery": "STANDARD_ROUTING",
 "maximumNumberOfIpv4Routes": 1,
 "maximumNumberOfIpv6Routes": 0,
 "dscpPreservation": "ENABLED",
 "serviceLevelSpecification": {}, <<skipped>>
 "maximumTransferUnit": 1522,
 "pathMtuDiscovery": "ENABLED",
 "fragmentation": "DISABLED",
 "cloud": {}, <<skipped>>
 "reservedPrefixes": {}, <<skipped>>
 "listOfClassOfServiceNames": ["low"]
 }
 }
 },
 {
 "id": "item-002",
 "action": "add",

29 / 80

 "serviceOrderItemRelationship": [
 {
 "orderItem": { << Relationship to IPVC in the same Service Order >>
 "itemId": "item-001"
 },
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC"
 }
],
 "service": {
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 { << Relationship to already configured IP UNI in Service Inventory >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 }
],
 "relatedContactInformation": [
 {
 "emailAddress": "BUS.ServiceOrderItemContact@example.com",
 "name": "BUS Service Order Item Contact",
 "number": "+12-345-678-90",
 "role": "busServiceOrderItemContact"
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {},
 "maximumNumberOfIpv4Routes": 1,
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {}, <<skipped>>
 "egressClassOfServiceMap": {}, <<skipped>>
 "ingressBwpEnvelope": {}, <<skipped>>
 "egressBwpEnvelope": {} <<skipped>>
 }
 }
 }
]
}

[R8] The BUS's request MUST contain requestedStartDate, requestedCompletionDate and at least one
serviceOrderItem.

[R9] The BUS's request MUST contain at least one serviceOrderItem.

[D1] The BUS and SOF SHOULD agree on using specific contact roles.

Note: During the onboarding the SOF may require to provide an additional contact role.

Note: It is up to SOF's discretion on how to react in case the BUS provides a contact role
that is not agreed upon during the onboarding. Preferably the SOF should return an error
with a message stating which roles are accepted. It may also be ignored

For each serviceOrderItem:

[R10] The BUS's Create Service Order request MUST contain:

30 / 80

id

action

service

[R11] When adding a note, BUS MUST add a note only with source=bus.

6.1.3. Create Service Order Response

Entities use for providing a response to Create Service Order request are presented in Figure
13. The main types used for response are ServiceOrder and ServiceOrderItem, which add attributes
set by SOF (like id or state) ServiceOrder is the root entity of a response. The response echoes
back all attributes as provided by the BUS and contains the same number of ServiceOrderItems
as in the request.

The following snippet presents the SOF's response.

Service Order Create Response

{
 "id": "00000000-3333-4444-5555-000000004567", << added by SOF >>
 "href": "{{baseUrl}}/serviceOrder/00000000-3333-4444-5555-000000004567", << added by SOF >>
 "state": "acknowledged", << added by SOF >>
 "orderDate": "2022-12-28T20:45:24.796Z", << added by SOF >>
 "expectedCompletionDate": "2023-01-25T20:00:00.000Z", << added by SOF >>
 "description": "Example Service Order",
 "externalId": "busOrder-101",
 "requestedCompletionDate": "2023-01-28T20:45:23.796Z",
 "requestedStartDate": "2023-01-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 },
 { << added by SOF >>
 "emailAddress": "ella.sof@example.com",
 "name": "Ella SOF",
 "number": "98-765-4321",
 "organization": "SOF Co.",
 "role": "sofContact"
 }
],
 "note": [
 {
 "id": "note-001",
 "author": "John Example",
 "date": "2022-12-28T20:45:23.796Z",
 "source": "bus",
 "text": "This is an example text"
 },
 { << added by SOF >>
 "id": "note-002",
 "author": "Ella SOF",
 "date": "2022-12-28T20:45:24.796Z",
 "source": "sof",
 "text": "This is an example response text"
 }
],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "add",
 "state": "acknowledged", << added by SOF >>

31 / 80

 "service": {
 "id": "00000000-5555-6666-7777-000000008888", << added by SOF >>
 "href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000008888", << added by SOF >>
 "state": "feasibilityChecked",
 "description": "IP Virtual Connection",
 "externalId": "BUS_IPVC-0001",
 "serviceType": "Internet Access",
 "name": "IPVC"
 ...
 << skipped, as provided by BUS >>
 }
 },
 {
 "id": "item-002",
 "action": "add",
 "state": "acknowledged", << added by SOF >>
 "serviceOrderItemRelationship": [
 {
 "orderItem": {
 "itemId": "item-001",
 "serviceOrderHref": "string",
 "serviceOrderId": "string"
 },
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC"
 }
],
 "service": {
 "id": "00000000-5555-6666-7777-000000009999", << added by SOF >>
 "href": "{{baseUrl}}/service/00000000-5555-6666-7777-000000009999", << added by SOF >>
 "state": "feasibilityChecked",
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 {
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 }
]
 ...
 << skipped, as provided by BUS >>

 }
 }
]
}

Attributes that are set by the SOF in the response are marked with the << added by SOF >> tag.
The response to the create request does not contain all possible attributes. Some of them are
valid only in the future lifecycle of the ServiceOrder (e.g. completionDate, startDate).

[R12] The SOF's response MUST include all and unchanged attributes' values as provided
by BUS in the request.

The SOF might append related contact information or notes if required, but cannot modify
items set by the BUS.

[R13] The SOF MUST specify the following attributes in a response:

id

state

orderDate

[R14] The id MUST remain the same value for the life of the Service Order.

32 / 80

[R15] When adding a note, SOF MUST add a note only with source=sof.

[R16] Notes MUST NOT be modified or deleted once entered.

For each serviceOrderItem:

[R17] The response MUST have the state attribute set.

[R18] If the Service Order Item state in the SOF's response is not completed, the response
MUST NOT contain the expectedCompletionDate.

6.1.4. Use Case 1a: Service Order Item to Add Service

When requesting a new service installation (action equal to add) the BUS needs to provide all
of its configuration information. The example for add action is already provided in the
snippets above.

The following requirements apply when serviceOrderItem.action is add:

[R19] The BUS MUST provide:

service.state

service.serviceConfiguration

[R20] If there is a relationship with a Service Order Item within the same Service Order, the
serviceOrderItemRelationship.itemId MUST be specified.

[R21] If there is a relationship with a Service Order Item within the same Service Order, the
serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId MUST NOT be
specified.

[R22] If there is a relationship with a Service Order Item of another Service Order, the
serviceOrderItemRelationship.itemId and serviceOrderItemRelationship.serviceOrderId MUST be specified.

[R23] The BUS MUST NOT specify the serviceOrderItem.service.id in the request. It is the SOF
who assigns this id.

Note: The service.id might not be assigned yet at the moment the SOF provides a response
for the Create Service Order Request.

6.1.5. Use case 1b: Service Order Item to Modify Existing Service

The following example shows a request for an order for an existing IPVC End Point Service
modification (action equal to modify). In particular, a change to maximumNumberOfIpv4Routes is
introduced.
The IPVC End Point service exists in SOF's inventory and is identified as 00000000-5555-6666-
7777-000000009999, as provided in SOF response presented in Chapter 6.1.3.

33 / 80

The following requirements apply to serviceOrderItem when action is modify:

[R24] The modify request MUST specify a reference (provide service.id) to an existing
service that is a subject of this order and provide the desired service.serviceConfiguration.

[R25] The modify request MUST provide:

service.id - a reference to an existing service that is a subject of this order
service.state

service.serviceConfiguration

[R26] The modify request MUST repeat the same values (specified or empty) of
service.serviceRelationship, and service.place as they are available in the inventory for a given
service instance. These values cannot be updated or deleted.

[R27] If there is a relationship with another Service Order Item, the serviceOrderItemRelationship
MUST be also specified unchanged.

There is no possibility to send an update to single attributes. The BUS must send a full
service description (the whole service.serviceConfiguration section and if set previously or to be
set: service.serviceRelationship and service.place), which means all attributes that represent the
desired state, even if some of them do not change.
If SOF does not allow for some of the attributes to change an appropriate error response (422)
must be returned to the BUS.

Please also note, that in the add case, a reference to the IPVC service used the
serviceOrderItemRelationship pointing to another serviceOrderItem in the same Service Order Request.
This is because the IPVC did not exist at that moment and was also a part of the order. In the
case of ordering the update of an existing IPVC End Point, the IPVC is also existing and it
must be referenced with the use of serviceRelationship. This example assumes that the IPVC
service is available in SOF's Inventory with the id equals "00000000-5555-6666-7777-000000008888" (as
provided in SOF response presented in Chapter 6.1.3.

Service Order Item to Modify Existing Service

{
 "description": "Example Service Order to Modify IPVC End Point service",
 "externalId": "busOrder-102",
 "requestedCompletionDate": "2023-02-03T20:45:23.796Z",
 "requestedStartDate": "2023-02-02T00:00:00.000Z",
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "12-345-6789",
 "numberExtension": "1234",
 "organization": "Example Co.",
 "role": "serviceOrderContact"
 }
],
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "modify",

34 / 80

 "service": {
 "id": "00000000-5555-6666-7777-000000009999", << id to point to service instance >>
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "name": "IPVCEndpoint",
 "state": "active",
 "serviceRelationship": [
 { << relation to IP UNI - not changed >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 },
 { << relation to IPVC - not changed, but provided with serviceRelationship instead of
serviceOrderItemRelationship >>
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC",
 "service": {
 "id": "00000000-5555-6666-7777-000000008888"
 }
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {},
 "maximumNumberOfIpv4Routes": 2, << modified value >>
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {},
 "egressClassOfServiceMap": {},
 "ingressBwpEnvelope": {},
 "egressBwpEnvelope": {}
 }
 }
 }
]
}

6.1.6. Use case 1c: Service Order Item to Delete Existing Service

The example below represents a single Service Order request for deletion (action=delete) of an
existing IPVC End Point service.

Service Order to Delete Existing Service

{
 "description": "Example Service Order to Delete IPVC End Point service",
 "externalId": "busOrder-103",
 "requestedCompletionDate": "2023-03-03T20:45:23.796Z",
 "requestedStartDate": "2023-03-02T00:00:00.000Z",
 "serviceOrderItem": [
 {
 "id": "item-001",
 "action": "delete",
 "service": {
 "id": "00000000-5555-6666-7777-000000009999" << id to point to service instance >>
 }
 }
]
}

35 / 80

The following requirements apply to serviceOrderItem when action is delete:

[R28] service.id MUST be provided.

[R29] The BUS MUST NOT provide any service attributes other than service.id.

6.1.7. Service Order and Service Order Items State Machine

Figure 14. Service Order and Service Order Items State Machine

Service Order and Service Order Item share the same list of possible states and states'
transitions. They are presented in Figure 14.

After receiving the request, the SOF performs basic checks of the message. If any problem
is found an Error response is provided. If the validation passes a response is provided with
ServiceOrder and all ServiceOrderItems in the acknowledged state. Before moving the order to the
inProgress state, the BUS performs all the remaining business and time-consuming validations.
At this point, an Error response cannot be provided anymore so the order moves to a rejected
state if some issues are found. The serviceOrderItem.terminationError acts as a placeholder to
provide a detailed description of what caused the problem.

Table 7 presents the states' descriptions.

State Description

acknowledged
A ServiceOrder request has been received and has passed message and basic
validations and a Success Response has been sent.

36 / 80

State Description

rejected

This state indicates that:
- Invalid information is provided through the ServiceOrder / ServiceOrderItem
request
- The request fails to meet validation rules for Service delivery (processing)
If one ServiceOrderItem is rejected, then the entire ServiceOrder request is
rejected and a Error Response is sent.

inProgress

This state indicates that all ServiceOrderItems have successfully passed the
validations checks and the scheduled Service delivery/processing has
started.
The ServiceOrder will be in inProgress state if at least one ServiceOrderItem is in
inProgress state

pending

This state indicates that a ServiceOrderItem is currently in a waiting stage for
an action/activity to be completed before the order-processing can
progress further, pending order amend or cancel assessment.
A pending state can lead into auto cancellation of an ServiceOrderItem, if no
action is taken within the agreed timeframe.
The ServiceOrder will be in pending state if at least one ServiceOrderItem is in
pending state

held

This state indicates that a ServiceOrderItem cannot be progressed due to an
issue. The Service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate the supply of order. Upon
resolution of the issue, the ServiceOrderItem will continue to progress.
A held state can lead into auto cancellation of a ServiceOrderItem if no action
is taken within the agreed timeframe.
The ServiceOrder will be in held state if at least one ServiceOrderItem is in held
state

failed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has failed. This indicates an irrecoverable error as opposed
to held or pending issues.
The ServiceOrder will be in failed state if at ALL ServiceOrderItems are in failed
state

completed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has completed.
The ServiceOrder will be in completed state if at ALL ServiceOrderItems are in
completed state

partial
This state indicates that some ServiceOrderItem are in completed state while
others are in cancelled and/or failed states, so the entire ServiceOrder is in a
partial state.

37 / 80

Table 7. Service Order and Service Order Item states

6.1.8. Specifying Place Details

Some service specifications may define requirements concerning place definition in case add
or modify action is used. For example, an IP UNI Access Link Trunk service specification
requires an INSTALL_LOCATION place definition.

There are different formats in which place information may be provided: MEFGeographicPoint,
FieldedAddress, FormattedAddress, GeographicAddressLabel, GeographicSiteRef, GeographicAddressRef. The first four
of them can be used to provide place description by value. The site and address reference
allow specifying the place information as a reference to previously validated address or site
available through SOF's Addressing and Site API endpoints, which definition is provided in
the SDK:

productApi/serviceability/address/geographicAddressManagement.api.yaml

productApi/serviceability/site/geographicSiteManagement.api.yaml

The Address Validation and Site APIs are standardized by:

Address, Service Site, and Product Offering Qualification Management, Requirements
and Use Cases MEF 79
Amendment to MEF 79: Address, Service Site, and Product Offering Qualification
Management, Requirements, and Use Cases MEF 79.0.1
Amendment to MEF 79: Address Validation MEF 79.0.2
LSO Cantata and LSO Sonata Address Management API - Developer Guide MEF 121
LSO Cantata and LSO Sonata Site Management API - Developer Guide MEF 122

The superclass for all address types is the RelatedPlaceRefOrValue which adds the role to add more
context to the specified address. To distinguish between place types the @type discriminator is
used.

Note: The RefOrValue stands for a pattern where an address can be provided either by id
(using GeographicSiteRef or GeographicAddressRef) OR by value (with use of MEFGeographicPoint,
FieldedAddress, FormattedAddress, GeographicAddressLabel). There is no way to specify an address with
use both ref AND value at the same time.

38 / 80

Figure 15. The data model for place representation

Examples of different place specification formats are provided below.

6.1.8.1. Fielded Address

{
 "@type": "FieldedAddress",
 "streetType": "ul.",
 "streetName": "Edmunda Wasilewskiego",
 "streetNr": "20",
 "streetNrSuffix": "14",
 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "geographicSubAddress": {
 "levelType": "floor",
 "levelNumber": "4"
 },
 "role": "INSTALL_LOCATION"
}

Fielded address example of a place specification. The type discriminator has the value
FieldedAddress. A subset of available attributes is used to describe the place. The fielded
address has an optional geographicSubAddress structure that defines several attributes that can be
used in case precise address information has to be provided. In the example above, a floor in
the building at the given address is specified using this structure. The role of the place is
assigned according to the requirements of the Operator UNI service specification.

6.1.8.2. Formatted Address

{
 "@type": "FormattedAddress",
 "addrLine1": "ul. Edmunda Wasilewskiego 20/14",
 "addrLine2": "Floor 4",

39 / 80

 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a formatted address. The type discriminator has the value
FormattedAddress. This example contains the same information as the previous FieldedAddress
example.

6.1.8.3. Geographic Point

{
 "@type": "MEFGeographicPoint",
 "spatialRef": "EPSG:4326 WGS 84",
 "x": "50.048868",
 "y": "19.929523",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a geographic point. spatialRef determines the standard that has
to be used to interpret coordinates provided in the required x (latitude), y (longitude), and
optional z (elevation) values.

This type allows only providing a point. It cannot carry more detailed information like the
floor number from previous examples.

[R30] The spatialRef value that can be used MUST be agreed between BUS and SOF.

6.1.8.4. Geographic Address Label

{
 "@type": "GeographicAddressLabel",
 "externalReferenceType": "CLLI",
 "externalReferenceId": "PLTXCL01",
 "role": "INSTALL_LOCATION"
}

The Geographic Address Label represents a unique identifier controlled by a generally
accepted independent administrative authority that specifies a fixed geographical location.
The example above is a place that represents a CLLI (Common Language Location
Identifier) identifier which is commonly used to refer locations in North America for
network equipment installations.

6.1.8.5. Geographic Site Reference

{
 "@type": "GeographicSiteRef",
 "id": "18d3bb74-997a-4a62-8198-84250766765a",

40 / 80

 "role": "INSTALL_LOCATION"
}

GeographicSiteRef type is used to specify a GeographicSite by reference in the request. In the above
example, a GeographicSite identified as 18d3bb74-997a-4a62-8198-84250766765a in the SOFs Service Site
API is used.

6.1.8.6. Geographic Address Reference

{
 "@type": "GeographicAddressRef",
 "id": "8198bb74-18d3-9ef0-4913-66765a842507",
 "role": "INSTALL_LOCATION"
}

GeographicAddressRef type is used to specify a GeographicAddress by reference in the request. In the
above example, a GeographicAddress identified as 8198bb74-18d3-9ef0-4913-66765a842507 in the SOFs
Service Site API is used.

6.2. Use Case 2: Retrieve List of Service Orders

The BUS can retrieve a list of ServiceOrders by using a GET /serviceOrder operation with desired
filtering criteria.

[O3] The BUS's request MAY contain none or more of the following attributes:

state

orderDate.gt

orderDate.lt

completionDate.gt

completionDate.lt

expectedCompletionDate.gt

expectedCompletionDate.lt

startDate.gt

startDate.lt

A response to retrieve a list of results can be paginated. The BUS can specify following
query attributes related to pagination:

limit - number of expected list items
offset - offset of the first element in the result list

The filtering and pagination attributes must be specified in URI query format RFC3986. The
SOF returns a list of elements that comply with the requested limit. If the requested limit is
higher than the supported list size the smaller list result is returned. In that case, the size of

41 / 80

the result is returned in the header attribute X-Result-Count. The SOF can indicate that there are
additional results available using:

X-Total-Count header attribute with the total number of available results
X-Pagination-Throttled header set to true

https://serverRoot/mefApi/legato/serviceOrderingManagement/v5/serviceOrder?state=completed&limit=10&offset=0

The example above shows a BUS's request to get all ServiceOrders that are in the completed state.
Additionally, the BUS asks only for a first (offset=0) pack of 10 results (limit=10) to be
returned. The correct response (HTTP code 200) in the response body contains a list of
ServiceOrder objects matching the criteria.

[R31] In case no items matching the criteria are found, the SOF MUST return a valid
response with an empty list.

6.3. Use Case 3: Retrieve Service Order by Service Order
Identifier

The BUS can get detailed information about the Service Order from the SOF by using a GET
/serviceOrder/{{id}} operation. The payload returned in the response includes all attributes the
BUS has provided while sending a Service Order create request. The attributes provided by
the SOF depend on the status of the ServiceOrder and may require some time to be set.

Both Get List and Get by Identifier operations return the same ServiceOrder representation, so a
response to a get by id for a ServiceOrder with id=00000000-3333-4444-5555-000000004567 would return
exactly sae response as presented in section 6.1.3.

[R32] In case id does not allow finding a ServiceOrder in SOF's system, an error response
Error404 MUST be returned.

[R33] Once the service identifier (serviceOrder.serviceOrderItem.service.id) is assigned, it MUST be
provided in the SOF's response.

6.4. Use case 4: Register for Notifications

The SOF communicates with the BUS with Notifications provided that:

BUS supports a notification mechanism
BUS has registered to receive notifications from the SOF

[O4] BUS MAY register for Notifications.

Supporting Notification is mandatory for SOF.

42 / 80

To register for notifications the BUS uses the registerListener operation from the API: POST /hub.
The request contains only 2 attributes:

callback - mandatory, to provide the callback address the events will be notified to,
query - optional, to provide the required types of event.

The figure below shows all entities involved in the Notification use cases.

Figure 16. Service Ordering Notification Data Model

By using a simple request:

{
 "callback": "https://bus.com/listenerEndpoint"
}

The BUS subscribes for notification of all types of events. Those are:

serviceOrderCreateEvent

serviceOrderStateChangeEvent

serviceOrderItemStateChangeEvent

serviceOrderInformationRequiredEvent

If the BUS wishes to receive only notifications of a certain type, a query must be added:

{
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceOrderStateChangeEvent"
}

If the BUS wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

43 / 80

eventType=serviceOrderStateChangeEvent,serviceOrderItemStateChangeEvent

or

eventType=serviceOrderStateChangeEvent&eventType=serviceOrderItemStateChangeEvent

The query formatting complies with RFC3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this
standard requires only eventType attribute to be supported.

[R34] eventType is the only attribute that the SOF MUST support in the query.

The SOF responds to the subscription request by adding the id of the subscription to the
message that must be further used for unsubscribing.

{
 "id": "00000000-0000-0000-0000-000000000678",
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceOrderStateChangeEvent"
}

Example of a final address that the Notifications will be sent to (for serviceOrderStateChangeEvent):

https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingNotification/v5/listener/serviceOrderStateChange

Event

6.5. Use case 5: Send Notification

Notifications are used to asynchronously inform the BUS about the respective objects and
attributes changes.

For sake of readability, all previous flow diagrams presented only cases of using only the
serviceOrderStateChangeEvent. Figure 17 presents the an end-to-end sequence of communication in
Use Case 1 - Create Service Order with BUS's subscription to both serviceOrderStateChangeEvent
and serviceOrderItemStateChangeEvent event types.

44 / 80

Figure 17. Use Case 1 - Create Service Order with all Notifications

45 / 80

After a successful Notification subscription, the BUS sends a Service Order create request.
The SOF responds with Service Order and all items in acknowledged state. Creation of Service
Order is notified with a serviceOrderCreateEvent. When the first Service Order Item moves to
inProgress, a serviceOrderItemStateChangeEvent is sent. Immediately the Service Order also changes its
state to inProgress and the serviceOrderStateChangeEvent is sent. Then the rest (if any) of the Service
Order Items are processed. When particular items are done processing they reach the completed
state. Once all are successfully done, the Service Order also changes state to completed. The
BUS will likely now ask for the Service Order details.

Note: The state change notification are sent only when the state attribute actually changes
it's value. There are no status change notifications sent upon Service Order or Service Order
Item creation.

[R35] The SOF MUST NOT send Notifications to BUS that have not registered for them.

[R36] The SOF MUST send Notifications to BUS that have registered for them.

Following snippets present examples of serviceOrderStateChangeEvent and
serviceOrderItemStateChangeEvent:

{
 "eventId": "event-001",
 "eventType": "serviceOrderStateChangeEvent",
 "eventTime": "2022-12-28T20:45:24.796Z",
 "event": {
 "id": "00000000-3333-4444-5555-000000004567"
 }
}

[R37] An event triggered by the Service Order Item (serviceOrderItemStateChangeEvent) MUST
additionally contain the relative orderItemId.

{
 "eventId": "event-002",
 "eventType": "serviceOrderItemStateChangeEvent",
 "eventTime": "2023-01-15T20:45:24.796Z",
 "event": {
 "id": "00000000-3333-4444-5555-000000004567",
 "orderItemId": "item-001"
 }
}

Note: the body of the event carries only the source object's id. The BUS needs to query it
later by id to get details.

To stop receiving events, the BUS has to use the unregisterListener operation from the DELETE
/hub/{id} endpoint. The id is the identifier received from the SOF during the listener
registration.

46 / 80

6.6. Service Lifecycle

Above chapters focus on the requirements and the lifecycle of ServiceOrder and ServiceOrderItem. It
is also very important to understand the lifecycle of the Service itself and how to manage it
with the Service Ordering.

Figure 18. Service Lifecycle

Figure 19 depicts the Service available states and their transitions.

The service lifecycle starts with the state provided in the add request. All but terminated can be
the initial state.

BUS can order Service state transition by placing a ServiceOrderItem with action=modify and
providing the desired service.state attribute. Transitions triggered by the same desired state
form sort of use cases that can be performed on a Service. They are gathered in Table 8
together with requirements on the Service state they are applicable for.

Use case action state pre-condition

checkFeasibility add feasibilityChecked N/A

designService add designed N/A

modify designed
feasibilityChecked
reserved

47 / 80

Use case action state pre-condition

reserveService add reserved N/A

modify reserved
feasibilityChecked
designed

provisionService add inactive N/A

modify inactive
feasibilityChecked
designed
reserved

activateService add active N/A

modify active

feasibilityChecked
designed
reserved
inactive

deactivate modify inactive active

terminateService modify terminated
inactive
active

Table 9. Service Life Use Cases

A Service in state=terminated can be retired (deleted) with a ServiceOrderItem with action=delete.

Table 10 summarizes the states and their descriptions:

State Description

feasibilityChecked
Initial check whether the necessary resources are available and
sufficient for the installation of a given service.

designed
The Service is designed. The resources are identified and/or
allocated, but not reserved.

reserved All required resources for given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed
and made available for service to other users.

Table 10. Service states

7. API Details

48 / 80

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and appropriate
response payload. The Service Order API uses the error responses as depicted and described
below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the Error.

Figure 20. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used
directly. The code in the HTTP header is used as a discriminator for the type of error returned
in runtime.

Name Type Description

message string
Text that provides mode details and corrective actions related to
the error. This can be shown to a client user.

reason* string
Text that explains the reason for the error. This can be shown to a
client user.

referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)

Inherits from:

Error

49 / 80

Name Type DescriptionName Type Description

code* Error400Code

One of the following error codes: - missingQueryParameter: The
URI is missing a required query-string parameter -
missingQueryValue: The URI is missing a required query-string
parameter value - invalidQuery: The query section of the URI is
invalid. - invalidBody: The request has an invalid body

7.1.1.3. enum Error400Code

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

Value

missingQueryParameter

missingQueryValue

invalidQuery

invalidBody

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code
One of the following error codes: - missingCredentials: No
credentials provided. - invalidCredentials: Provided credentials
are invalid or expired

7.1.1.5. enum Error401Code

Description: One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

Value

50 / 80

Value

missingCredentials

invalidCredentials

7.1.1.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

Name Type Description

code* Error403Code

This code indicates that the server understood the request but
refuses to authorize it because of one of the following error
codes: - accessDenied: Access denied - forbiddenRequester:
Forbidden requester - tooManyUsers: Too many users

7.1.1.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to
authorize it because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

Value

accessDenied

forbiddenRequester

tooManyUsers

7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

Error

Name Type Description

51 / 80

Name Type Description

code* string
The following error code: - notFound: A current representation for the
target resource not found

7.1.1.9. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the Error422
data type. Each list item describes a business validation problem. This type introduces the
propertyPath attribute which points to the erroneous property of the request, so that the BUS
may fix it easier. It is highly recommended that this property should be used, yet remains
optional because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

Error

Name Type Description

code* Error422Code

One of the following error codes: - missingProperty: The
property that was expected is not present in the payload -
invalidValue: The property has an incorrect value -
invalidFormat: The property value does not comply with
the expected value format - referenceNotFound: The
object referenced by the property cannot be identified in
the target system - unexpectedProperty: Additional, not
expected property has been provided - tooManyRecords:
the number of records to be provided in the response
exceeds the threshold. - otherIssue: Other problem was
identified (detailed information provided in a reason)

propertyPath string

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

7.1.1.10. enum Error422Code

Description: One of the following error codes:

missingProperty: The property that was expected is not present in the payload
invalidValue: The property has an incorrect value

52 / 80

invalidFormat: The property value does not comply with the expected value format
referenceNotFound: The object referenced by the property cannot be identified in the
target system
unexpectedProperty: Additional, not expected property has been provided
tooManyRecords: the number of records to be provided in the response exceeds the
threshold.
otherIssue: Other problem was identified (detailed information provided in a reason)

Value

missingProperty

invalidValue

invalidFormat

referenceNotFound

unexpectedProperty

tooManyRecords

otherIssue

7.1.1.11. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

Error

Name Type Description

code* string
The following error code: - internalError: Internal server error - the server
encountered an unexpected condition that prevented it from fulfilling the
request.

7.2. Management API Data model

Figure 21 presents the whole Service Order Management data model. The data types are
discussed later in this section.

53 / 80

Figure 21. Service Order Management Data Model

7.2.1. ServiceOrder

7.2.1.1 Type ServiceOrder_Common

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)
system that will orchestrate the Service fulfillment.

This type defines all attributes common to objects used in request and response.

Name Type Multiplicity Description

coordinatedAction OrderCoordinatedAction[] 0..*

The interval after the
completion of one or
more related Service
Order Items that this
Service Order Item can be
started or completed

description string 0..1
A free-text description of
the service order

externalId string 0..1
ID given by the consumer
to facilitate searches

54 / 80

Name Type Multiplicity Description

note Note_BusSof[] 0..*

Extra-information about
the order; e.g. useful to
add extra delivery
information that could be
useful for a human
process

orderRelationship ServiceOrderRelationship[] 0..*

A list of service orders
related to this order (e.g.
prerequisite, dependent
on)

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of an
individual or organization
playing a role for this
Service Order. For
providing Notification
Contact,
`role=notificationContact`
MUST be used.

requestedCompletionDate* date-time 1
Requested delivery date
from the requestors
perspective

requestedStartDate* date-time 1
Order start date wished
by the requestor

7.2.1.2. Type ServiceOrder_Create

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)
system that will orchestrate the Service fulfillment. This type extends ServiceOrder_Common and
adds attributes specific to the request response.

Inherits from:

ServiceOrder_Common

Name Type Multiplicity Description

55 / 80

Name Type Multiplicity Description

serviceOrderItem* ServiceOrderItem_Create[] 1..*
A list of service order
items to be processed by
this order

7.2.1.3. Type ServiceOrder

Description: A Service Order is used to request operations on a Service instance. A Service
Order groups one or more one Service Order Items - one per specific action on a Service
instance. The Action associated with the Service Order Item describes the operation (add,
modify, delete) to be applied on the specified Service instance.The Service Order Item and
its associated Action can operate on both existing (modify, delete) as well as future (add)
Service instance.The Service Order is triggered from the Business Application (BA) system
in charge of the Service Order management to the Service Orchestration Function (SOF)
system that will orchestrate the Service fulfillment.

Inherits from:

ServiceOrder_Common

Name Type Multiplicity Description

href uri 0..1 Hyperlink reference

id* string 1 unique identifier

completionDate date-time 0..1
Effective delivery date
amended by the
provider

expectedCompletionDate date-time 0..1
Expected delivery date
amended by the
provider

serviceOrderItem* ServiceOrderItem[] 1..*
A list of service order
items to be processed
by this order

startDate date-time 0..1
Date when the order
was started for
processing

state* ServiceOrderStateType 1
The state of the
Service Order

56 / 80

Name Type Multiplicity Description

orderDate* date-time 1

Date when the Service
Order was created in
the SOF's system and
a Service Order
Identifier was
assigned

7.2.1.4. enum ServiceOrderStateType

Description: Possible values for the state of a Service Order

State Description

acknowledged
A ServiceOrder request has been received and has passed message and basic
validations and a Success Response has been sent.

rejected

This state indicates that:
- Invalid information is provided through the ServiceOrder / ServiceOrderItem
request
- The request fails to meet validation rules for Service delivery (processing)
If one ServiceOrderItem is rejected, then the entire ServiceOrder request is
rejected and a Error Response is sent.

inProgress

This state indicates that all ServiceOrderItems have successfully passed the
validations checks and the scheduled Service delivery/processing has
started.
The ServiceOrder will be in inProgress state if at least one ServiceOrderItem is in
inProgress state

pending

This state indicates that a ServiceOrderItem is currently in a waiting stage for
an action/activity to be completed before the order-processing can
progress further, pending order amend or cancel assessment.
A pending state can lead into auto cancellation of an ServiceOrderItem, if no
action is taken within the agreed timeframe.
The ServiceOrder will be in pending state if at least one ServiceOrderItem is in
pending state

held

This state indicates that a ServiceOrderItem cannot be progressed due to an
issue. The Service delivery (processing) has been temporarily delayed to
resolve an infrastructure shortfall to facilitate supply of order. Upon
resolution of the issue, the ServiceOrderItem will continue to progress.
A held state can lead into auto cancellation of an ServiceOrderItem, if no action
is taken within the agreed timeframe.
The ServiceOrder will be in held state if at least one ServiceOrderItem is in held
state

57 / 80

State Description

failed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has failed. This indicates an irrecoverable error as opposed
to held or pending issues.
The ServiceOrder will be in failed state if at ALL ServiceOrderItems are in failed
state

completed

This state indicates that Service delivery (processing) associated with a
ServiceOrderItem has completed.
The ServiceOrder will be in completed state if at ALL ServiceOrderItems are in
completed state

partial
This state indicates that some ServiceOrderItem are in completed state while
others are in cancelled and/or failed states, so the entire ServiceOrder is in a
partial state.

7.2.1.5. Type ServiceOrderRef

Description: Reference to a Service Order instance.

Name Type Multiplicity Description

href string 0..1 A hyperlink to the related order

id* string 1 The id of the related order

7.2.1.6. Type ServiceOrderRelationship

Description: Reference to a related Service Order and the type of that association.

Name Type Multiplicity Description

serviceOrder* ServiceOrderRef 1 A reference to a Service Order

58 / 80

Name Type Multiplicity Description

relationshipType* string 1

Specifies the type (nature) of the
relationship to the related Service.
The nature of required relationships
varies for Services of different
types. For example, a UNI or ENNI
Service may not have any
relationships, but an Access E-Line
may have two mandatory
relationships (related to the UNI on
one end and the ENNI on the other).
More complex Services such as
multipoint IP or Firewall Services
may have more complex
relationships. As a result, the
allowed and mandatory
`relationshipType` values are
defined in the Service Specification.

7.2.2. Service Order Item

7.2.2.1 Type ServiceOrderItem_Common

Description: An identified part of the order. A service order is decomposed into one or
more order items. This type holds the attributes common to request and response
representation of the Service Order Item.

Name Type Multiplicity Description

id* string 1

Identifier of the
order item
(generally it is a
sequence number
01, 02, 03, ...)

action* ServiceActionType 1

Action to be
applied to the
Service referred
by this Service
Order Item

59 / 80

Name Type Multiplicity Description

coordinatedAction OrderItemCoordinatedAction[] 0..*

The interval after
the completion of
one or more
related Service
Order Items that
this Service Order
Item can be
started or
completed

note Note_BusSof[] 0..*

Extra-information
about the order
item; e.g. useful
to add extra
delivery
information that
could be useful
for a human
process

service* ServiceValue 1

A description of
the service that is
the subject of this
service order
item.

serviceOrderItemRelationship ServiceOrderItemRelationship[] 0..* Specifies the type
(nature) of the
relationship to the
related Service.
The nature of
required
relationships
varies for
Services of
different types.
For example, a
UNI or ENNI
Service may not
have any
relationships, but
an E-Line may
have two

60 / 80

Name Type Multiplicity Description

mandatory
relationships
(related to the
UNI on one end
and the ENNI on
the other). More
complex Services
such as multipoint
IP or Firewall
Services may
have more
complex
relationships. As
a result, the
allowed and
mandatory
`relationshipType`
values are defined
in the Service
Specification.
Related items can
be both from
within the same
Service Order or
from other one.
When referencing
item within the
same Service
Order,

7.2.2.2. Type ServiceOrderItem_Create

Description: An identified part of the order. A service order is decomposed into one or
more order items. This type is used in the request.

Inherits from:

ServiceOrderItem_Common

7.2.2.3. Type ServiceOrderItem

61 / 80

Description: An identified part of the order. A service order is decomposed into one or
more order items. The modelling pattern introduces the Common supertype to aggregate
attributes that are common to both ServiceOrderItem and ServiceOrderItem_Create. The Create type has a
subset of attributes of the response type and does not introduce any new, thus the Create type
has an empty definition

Inherits from:

ServiceOrderItem_Common

Name Type Multiplicity Description

state* ServiceOrderStateType 1 State of the Service Order Item

terminationError TerminationError[] 0..*
When the SOF cannot process
the request, the SOF returns a
text-based list of reasons here.

7.2.2.4. enum ServiceActionType

Description: Action to be applied to the Service referred by this Service Order Item

Value

add

modify

delete

7.2.2.5. Type ServiceOrderItemRef

Description: A reference to a Service Order Item. When referencing item from within the
same Service Order, the serviceOrderId and serviceOrderHref MUST be empty.

Name Type Multiplicity Description

itemId* string 1
Identifier of referenced item within the
referenced Service Order

serviceOrderHref string 0..1
Link to the order to which the referenced item
belongs to

serviceOrderId string 0..1
Identifier of the order to which the referenced
item belongs to

7.2.2.6. Type ServiceOrderItemRelationship

Description: Specifies the type (nature) of the relationship to the related Service. The
nature of required relationships varies for Services of different types. For example, a UNI or

62 / 80

ENNI Service may not have any relationships, but an E-Line may have two mandatory
relationships (related to the UNI on one end and the ENNI on the other). More complex
Services such as multipoint IP or Firewall Services may have more complex relationships.
As a result, the allowed and mandatory relationshipType values are defined in the Service
Specification. Related item can be both from within the same Service Order or from other
one. When referencing item from within the same Service Order, the orderItem.serviceOrderId
and orderItem.serviceOrderHref MUST be empty.

Name Type Multiplicity Description

orderItem* ServiceOrderItemRef 1
A reference to a Service Order
Item

relationshipType* string 1

Specifies the nature of the
relationship to the related
Service Order Item. A string
that is one of the relationship
types specified in the Service
Specification.

7.2.3. Service representation

7.2.3.1. Type ServiceValue

Description: ServiceValue is a base class for defining the Service.

Name Type Multiplicity Description

href string 0..1
Hyperlink reference to a
Service

id string 0..1
unique identifier of a
Service

description string 0..1
Free-text description of
the service

externalId string 0..1
ID given by the consumer
to facilitate searches

startDate date-time 0..1
Date when the service
starts

endDate date-time 0..1
Date when the service
ends

state ServiceStateType 0..1
Represent the state of
lifecycle of the Service
Order.

63 / 80

Name Type Multiplicity Description

note Note_BusSof[] 0..*
A list of notes made on
this service

serviceType string 0..1
Business type of the
service

name string 0..1 Name of the service

serviceRelationship ServiceRelationship[] 0..*

Specifies the type (nature)
of the relationship to the
related Service. The
nature of required
relationships varies for
Services of different
types. For example, a UNI
or ENNI Service may not
have any relationships,
but an Access E-Line may
have two mandatory
relationships (related to
the UNI on one end and
the ENNI on the other).
More complex Services
such as multipoint IP or
Firewall Services may
have more complex
relationships. As a result,
the allowed and
mandatory
`relationshipType` values
are defined in the Service
Specification.

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of an
individual or organization
playing a role for this
Service

place RelatedPlaceRefOrValue[] 0..*

The relationships between
this Service Order Item
and one or more Places as
defined in the Service
Specification.

64 / 80

Name Type Multiplicity Description

serviceConfiguration MefServiceConfiguration 0..1

MEFServiceConfiguration
is used to specify the
MEF specific service
payload. This field MUST
be populated for all item
'actions' other than
'delete'. It MUST NOT be
populated when an item
`action` is `delete`. The
@type is used as a
discriminator.

7.2.3.2. Type MefServiceConfiguration

Description: MEFServiceConfiguration is used as an extension point for MEF specific
service payload. The @type attribute is used as a discriminator

Name Type Multiplicity Description

@type* string 1
The value of the "$id" as defined in the JSON schema of
the service.

7.2.3.3. Type ServiceRelationship

Description: A relationship to an existing Service. The requirements for usage for given
Service are described in the Service Specification.

Name Type Multiplicity Description

relationshipType* string 1

Specifies the type (nature) of the
relationship to the related Service. The
nature of required relationships varies for
Services of different types. For example, a
UNI or ENNI Service may not have any
relationships, but an Access E-Line may
have two mandatory relationships (related
to the UNI on one end and the ENNI on
the other). More complex Services such
as multipoint IP or Firewall Services may
have more complex relationships. As a
result, the allowed and mandatory
`relationshipType` values are defined in
the Service Specification.

65 / 80

Name Type Multiplicity Description

service* ServiceRef 1 A reference to a Service

7.2.3.3. enum ServiceStateType

Description: Valid values for the lifecycle state of the Service.

State Description

feasibilityChecked
Initial check whether the necessary resources are available and
sufficient for the installation of a given service.

designed
The Service is designed. The resources are identified and/or
allocated, but not reserved.

reserved All required resources for given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed
and made available for service to other users.

7.2.3.3. Type ServiceRef

Description: Reference to a Service instance.

Name Type Multiplicity Description

href string 0..1 Hyperlink reference to Service

id* string 1 unique identifier of Service

7.2.4. Place representation

There are several formats in which place information can be introduced to the Service Order
request. They are described in Section 6.1.8.

7.2.4.1. Type RelatedPlaceRefOrValue

Description: A Place provided either by value or by reference

Name Type Multiplicity Description

@type* string 1

This field is used as a discriminator and is
used between different place representations.
This type might discriminate for additional
related place as defined in '@schemaLocation'.

66 / 80

Name Type Multiplicity Description

@schemaLocation uri 0..1
A URI to a JSON-Schema file that defines
additional attributes and relationships. May be
used to define additional related place types.

role* string 1 Role of this place

7.2.4.2. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

city* string 1
The city that the address
is in

country* string 1
Country that the address
is in

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the
address is in

postcode string 0..1

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also
known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

stateOrProvince string 0..1
The State or Province
that the address is in

streetName* string 1
Name of the street or
other street type

67 / 80

Name Type Multiplicity Description

streetNr string 0..1

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
API.

streetNrLast string 0..1
Last number in a range
of street numbers
allocated to a property

streetNrLastSuffix string 0..1
Last street number
suffix for a ranged
address

streetNrSuffix string 0..1
The first street number
suffix

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g.,
alley, avenue,
boulevard, brae,
crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

7.2.4.3. Type FieldedAddressValue

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Multiplicity Description

city* string 1
The city that the address
is in

68 / 80

Name Type Multiplicity Description

country* string 1
Country that the address
is in

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the
address is in

postcode string 0..1

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also
known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

stateOrProvince string 0..1
The State or Province
that the address is in

streetName* string 1
Name of the street or
other street type

streetNr string 0..1

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
API.

streetNrLast string 0..1
Last number in a range
of street numbers
allocated to a property

streetNrLastSuffix string 0..1
Last street number
suffix for a ranged
address

69 / 80

Name Type Multiplicity Description

streetNrSuffix string 0..1
The first street number
suffix

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g.,
alley, avenue,
boulevard, brae,
crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

7.2.4.4. Type FormattedAddress

Description: A type of Address that has discrete fields for each type of boundary or
identifier with the exception of street and more specific location details, which are
combined into a maximum of two strings based on local postal addressing conventions.
Reference: MEF 79 (Sn 8.9.3)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

addrLine1* string 1 The first address line in a formatted address

addrLine2 string 0..1 The second address line in a formatted address

city* string 1 The city that the address is in

country* string 1 Country that the address is in

locality string 0..1

An area of defined or undefined boundaries
within a local authority or other legislatively
defined area, usually rural or semi-rural in
nature

postcode string 0..1
Descriptor for a postal delivery area, used to
speed and simplify the delivery of mail (also
known as ZIP code)

postcodeExtension string 0..1
An extension of a postal code. E.g. the part
following the dash in an US urban property
address

stateOrProvince string 0..1 The State or Province that the address is in

70 / 80

7.2.4.5. Type GeographicPoint

Description: A GeographicPoint defines a geographic point through coordinates.
Reference: MEF 79 (Sn 8.9.5)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

spatialRef* string 1

The spatial reference system used to determine the
coordinates (e.g. "WGS84"). The system used and the
value of this field are to be agreed during the
onboarding process.

x* string 1
The latitude expressed in the format specified by the
`spacialRef`

y* string 1
The longitude expressed in the format specified by the
`spacialRef`

z string 0..1
The elevation expressed in the format specified by the
`spacialRef`

7.2.4.6. Type GeographicAddressLabel

Description: A unique identifier controlled by a generally accepted independent
administrative authority that specifies a fixed geographical location. Reference: MEF 79 (Sn
8.9.4)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

externalReferenceId* string 1 A reference to an address by id

externalReferenceType* string 1

Uniquely identifies the authority that
specifies the addresses reference and/or
its type (if the authority specifies more
than one type of address). The value(s)
to be used are to be agreed during the
onboarding. For North American
providers this would normally be CLLI
(Common Language Location Identifier)
code.

71 / 80

7.2.4.7. Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Multiplicity Description

buildingName string 0..1

Allows for
identification of
places that require
building name as
part of addressing
information

levelNumber string 0..1

Used where a level
type may be
repeated e.g.
BASEMENT 1,
BASEMENT 2

levelType string 0..1
Describes level
types within a
building

privateStreetName string 0..1

"Private streets
internal to a
property (e.g. a
university) may
have internal names
that are not recorded
by the land title
office

privateStreetNumber string 0..1
Private streets
numbers internal to
a private street

subUnit GeographicSubAddressUnit[] 0..*

Representation of a
MEFSubUnit It is
used for describing
subunit within a
subAddress e.g.
BERTH, FLAT,
PIER, SUITE,
SHOP, TOWER,
UNIT, WHARF.

7.2.4.8. Type GeographicSubAddressUnit

72 / 80

Description: Allows for sub unit identification

Name Type Multiplicity Description

subUnitNumber* string 1
The discriminator used for the subunit, often
just a simple number but may also be a range.

subUnitType* string 1
The type of subunit e.g.BERTH, FLAT, PIER,
SUITE, SHOP, TOWER, UNIT, WHARF.

7.2.4.9. Type GeographicAddressRef

Description: A reference to a Geographic Address resource available through Address
Validation API.

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

href string 0..1

Hyperlink to the referenced GeographicAddress. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the
BA in a request

id* string 1
Identifier of the referenced Geographic Address. This
identifier is assigned during a successful address validation
request (Geographic Address Validation API)

7.2.4.10. Type GeographicSiteRef

Description: A reference to a Geographic Site resource available through Service Site API

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

href string 0..1

Hyperlink to the referenced GeographicSite. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the
BA in a request

id* string 1 Identifier of the referenced Geographic Site.

7.2.5. Notification registration

73 / 80

Notification registration and management are done through /hub API endpoint. The below
sections describe data models related to this endpoint.

7.2.5.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

Name Type Multiplicity Description

callback* string 1

This callback value must be set to *host* property from Service Orde
(serviceOrderNotification.api.yaml). This property is appended with
in that API to construct an URL to which notification is sent. E.g. for
service order state change event notification will be sent to:
`https://bus.com/listenerEndpoint/mefApi/legato/serviceOrderingMa

query string 0..1

This attribute is used to define to which type of events to register to.
serviceOrderStateChangeEvent". To subscribe for more than one eve
`eventType=serviceOrderStateChangeEvent,serviceOrderItemStateC
'serviceOrderEventType' in serviceOrderNotification.api.yaml. An em
in subscription for all event types.

7.2.5.2. Type EventSubscription

Description: This resource is used to respond to notification subscriptions.

Name Type Multiplicity Description

callback* string 1
The value provided by in `EventSubscriptionInput`
during notification registration

id* string 1
An identifier of this Event Subscription assigned when
a resource is created.

query string 0..1
The value provided by the `EventSubscriptionInput`
during notification registration

7.2.6. Common

Types described in this subsection are shared among two or more Cantata and Sonata APIs.

7.2.6.1. Type OrderCoordinatedAction

Description: The interval after the completion of one or more related Order that this Order
can be started or completed

Name Type Multiplicity Description

74 / 80

Name Type Multiplicity Description

coordinatedActionDelay* Duration 1

The period
of time for
which the
coordinated
action is
delayed.

coordinationDependency* OrderItemCoordinationDependencyType 1

A
dependency
between the
Order and a
related
Order

orderId* string 1

Specifies
Order that
is to be
coordinated
with this
Order.

7.2.6.2. Type OrderItemCoordinatedAction

Description: The interval after the completion of one or more related Order Items that this
Order Item can be started or completed

Name Type Multiplicity Description

coordinatedActionDelay* Duration 1

The period
of time for
which the
coordinated
action is
delayed.

coordinationDependency* OrderItemCoordinationDependencyType 1

A
dependency
between the
Order Item
and a
related
Order Item

75 / 80

Name Type Multiplicity Description

itemId* string 1

Specifies
Order Item
that is to be
coordinated
with this
Order Item.

7.2.6.2. enum OrderItemCoordinationDependencyType

Description: Possible values of the Order Item Coordination Dependency

OrderItemCoordinationDependencyType Description

startToStart
Work on the Specified Order Item can only
be started after the Coordinated Order Items
are started

startToFinish
The Coordinated Order Items must
complete before work on the Specified
Order Item begins

finishToStart
Work on the Related Order Items begins
after the completion of the Specified Order
Item

finishToFinish
Work on the Related Order Items completes
at the same time as the Specified Order
Item

7.2.6.11. Type Note_BusSof

Description: Extra information about a given entity. Only useful in processes involving
human interaction. Not applicable for an automated process.

Name Type Multiplicity Description

author* string 1 Author of the note

date* date-time 1 Date of the note

id* string 1
Identifier of the note within its containing entity
(may or may not be globally unique, depending on
provider implementation)

source* BusSofType 1 Indicates if this Note was added by BUS or SOF.

text* string 1 Text of the note

76 / 80

7.2.6.13. Type RelatedContactInformation

Description: Contact information of an individual or organization playing a role for this
Order Item. The rule for mapping a represented attribute value to a role is to use the
lowerCamelCase pattern

Name Type Multiplicity Description

emailAddress* string 1 Email address

name* string 1 Name of the contact

number* string 1 Phone number

numberExtension string 0..1 Phone number extension

organization string 0..1
The organization or company
that the contact belongs to

postalAddress FieldedAddressValue 0..1
Identifies the postal address of
the person or office to be
contacted.

role* string 1
A role the party plays in a given
context.

The role attribute is used to provide a reason the particular party information is used. It can
result from business requirements (e.g. SOF Contact Information) or from the Service
Specification requirements.

The rule for mapping a represented attribute value to a role is to use the lowerCamelCase
pattern e.g.

BUS Contact: role equal to busInformation
SOF Contact: role equal to sofContact

7.2.6.14. Type TerminationError

Description: This indicates an error that caused an Item to be terminated. The code and
propertyPath should be used like in Error422.

Name Type Description

77 / 80

Name Type Description

code Error422Code

One of the following error codes: - missingProperty: The
property the SOF has expected is not present in the
payload - invalidValue: The property has an incorrect
value - invalidFormat: The property value does not comply
with the expected value format - referenceNotFound: The
object referenced by the property cannot be identified in
the SOF system - unexpectedProperty: Additional
property, not expected by the SOF has been provided -
tooManyRecords: the number of records to be provided in
the response exceeds the SOF's threshold. - otherIssue:
Other problem was identified (detailed information
provided in a reason)

propertyPath string

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

value string Text to describe the reason of the termination.

7.2.6.15. enum TimeUnit

Description: Represents a unit of time.

Value

calendarMonths

calendarDays

calendarHours

calendarMinutes

businessDays

businessHours

businessMinutes

7.3. Notification API Data model

Figure 22 presents the Service Order Management Notification data model.

78 / 80

Figure 22. Service Order Management Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Multiplicity Description

eventId* string 1 Id of the event

eventTime* date-time 1 Date-time when the event occurred

7.3.2. Type ServiceOrderEvent

Description:

Inherits from:

Event

Name Type Multiplicity Description

eventType* ServiceOrderEventType 1 Indicates the type of the event.

event* ServiceOrderEventPayload 1
A reference to the Service Order
that is source of the notification.

7.3.3. Type ServiceOrderEventPayload

Description: The identifier of the Service Order and Order Item being subject of this event.

79 / 80

Name Type Multiplicity DescriptionName Type Multiplicity Description

orderItemId string 0..1
ID of the Service Order Item (within the Service
Order) which state change triggered the event.
Mandatory for `serviceOrderItemStateChangeEvent`.

id* string 1 ID of the Service Order

href string 0..1 Hyperlink to access the Service Order

7.3.4. enum ServiceOrderEventType

Description: Indicates the type of Service Order event.

Value

serviceOrderCreateEvent

serviceOrderStateChangeEvent

serviceOrderItemStateChangeEvent

serviceOrderInformationRequiredEvent

8. References

JSON Schema draft 7, JSON Schema: A Media Type for Describing JSON Documents
and associated documents, by Austin Wright and Henry Andrews, March 2018.
Copyright © 2018 IETF Trust and the persons identified as the document authors. All
rights reserved.
MEF 10.4, Subscriber Ethernet Services Attributes, December 2018
MEF 26.2, External Network Network Interface (ENNI) and Operator Service
Attributes, August 2016
MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework, February 2021
MEF 61.1, IP Service Attributes, May 2019
MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and
Mean Time to Repair Performance Metric, July 2022
MEF 70, SD-WAN Service Attributes and Services, July 2019
MEF 79, Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019
MEF 79.0.1, Amendment to MEF 79: Address, Service Site, and Product Offering
Qualification Management, Requirements, and Use Cases, December 2020
MEF 79.0.2, Amendment to MEF 79: Address Validation, July 2021
[MEF W100], LSO Legato Service Specification - SD-WAN Schema Guide
[MEF W101], LSO Legato Service Specification - Carrier Ethernet Schema Guide
[MEF W102], LSO Legato Service Specification - IP/IP-VPN Schema Guide

https://json-schema.org/specification-links.html#draft-7
https://www.mef.net/wp-content/uploads/2018/12/MEF-10-4.pdf
https://www.mef.net/wp-content/uploads/2016/08/MEF-26-2.pdf
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
https://www.mef.net/wp-content/uploads/2019/05/MEF-61-1.pdf
https://www.mef.net/wp-content/uploads/MEF-61.1.1.pdf
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf
https://www.mef.net/wp-content/uploads/2019/11/MEF-79.pdf
https://www.mef.net/wp-content/uploads/2020/12/MEF-79-0-1.pdf
https://www.mef.net/wp-content/uploads/MEF-79.0.2.pdf

80 / 80

MEF 121, LSO Cantata and LSO Sonata Address Management API - Developer Guide,
May 2022
MEF 122, LSO Cantata and LSO Sonata Site Management API - Developer Guide,
May 2022
MEF 128, LSO API Security Profile, July 2022
RFC2119, Key words for use in RFCs to Indicate Requirement Levels, by S. Bradner,
March 1997
RFC3986 Uniform Resource Identifier (URI): Generic Syntax, January 2005
RFC8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, by B.
Leiba, May 2017, Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
RFC7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, June 2014
https://tools.ietf.org/html/rfc7231
TMF630 TMF630 API Design Guidelines 4.2.0
TMF641 TMF641 Service Order Management API REST Specification v4.1.0

https://www.mef.net/wp-content/uploads/MEF-121.pdf
https://www.mef.net/wp-content/uploads/MEF-122.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc7231
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/
https://www.tmforum.org/resources/specification/tmf641-service-ordering-api-user-guide-v4-1-0/

