

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-

ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to
modify any of the information contained herein.

 1

 2

Technical Paper 3

 4

Working Draft 5

 6

 7

Example Implementation of the Dynamic 8

Binding for the MEF LSO APIs 9

 10

 11

September 2021 12

 13

This draft represents MEF work in progress and 14

is subject to change. 15

 16

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-

ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to
modify any of the information contained herein.

Disclaimer 17

© MEF Forum 2021. All Rights Reserved. 18

The information in this publication is freely available for reproduction and use by any recipient 19

and is believed to be accurate as of its publication date. Such information is subject to change 20

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume 21

responsibility to update or correct any information in this publication. No representation or war-22

ranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or applica-23

bility of any information contained herein and no liability of any kind shall be assumed by MEF 24

as a result of reliance upon such information. 25

The information contained herein is intended to be used without modification by the recipient or 26

user of this document. MEF is not responsible or liable for any modifications to this document 27

made by any other party. 28

The receipt or any use of this document or its contents does not in any way create, by implication 29

or otherwise: 30

a) any express or implied license or right to or under any patent, copyright, trademark or 31

trade secret rights held or claimed by any MEF member which are or may be associated 32

with the ideas, techniques, concepts or expressions contained herein; nor 33

b) any warranty or representation that any MEF members will announce any product(s) 34

and/or service(s) related thereto, or if such announcements are made, that such an-35

nounced product(s) and/or service(s) embody any or all of the ideas, technologies, or 36

concepts contained herein; nor 37

c) any form of relationship between any MEF member and the recipient or user of this 38

document. 39

Implementation or use of specific MEF standards, specifications, or recommendations will be vol-40

untary, and no Member shall be obliged to implement them by virtue of participation in MEF 41

Forum. MEF is a non-profit international organization to enable the development and worldwide 42

adoption of agile, assured and orchestrated network services. MEF does not, expressly or other-43

wise, endorse or promote any specific products or services. 44

 45

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-

ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to
modify any of the information contained herein.

Page iii

Table of Contents

1 Introduction ... 1

2 Architecture ... 2

3 Implementation ... 3

4 Installation & Running ... 6

5 Use Cases.. 6

5.1 Use Case 1: Lack of product specification .. 7
5.2 Use Case 2: Add the product specification .. 7
5.3 Use Case 3: New product specification support .. 7
5.4 Use Case 4: New product payload validation .. 7

6 Program Details .. 7

6.1 Product Schemas.. 7
6.2 Common Schemas ... 8
6.3 Schema Repository .. 8
6.4 Codegen ... 9

7 Future Considerations .. 10

8 Support... 10

List of Figures

Figure 1 – Cantata and Sonata API Framework ... 1
Figure 2 – Architecture ... 2
Figure 3 – Implementation .. 4
Figure 4 – Application flow .. 5
Figure 5 – Architecture with Catalog API .. 10

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 1

1 Abstract

This non-normative document provides an example implementation of the so called dynamic bind-

ing approach to combining the LSO APIs with LSO Payloads. It’s purpose is to help Software

Architects, Analysts and Developers to better understand and familiarize with the dynamic binding

concept and what are the advantages and disadvantages it brings.

2 Introduction

This document's resources: source code, Postman collection, and this document, can be found on

MEF GitHub (available for registered MEF members. Please visit How do I get access to MEF

GitHub? to get the access):

https://github.com/MEF-GIT/Example-LSO-Dynamic-Binding-Implementation

As presented in Figure 1. MEF LSO APIs are composed of three structural components:

• Generic API framework

• Product-independent functional API – called the envelope. Function-specific information

and Function-specific operations, e.g., the Product Offering Qualification (POQ), Quote,

Product Order)

• Product-specific information – MEF product specification data model, e.g., Access E-

Line

Figure 1 – Cantata and Sonata API Framework

They need to be used together. There are two ways to accomplish that.

https://github.com/MEF-GIT/Example-LSO-Dynamic-Binding-Implementation
https://github.com/MEF-GIT/Example-LSO-Dynamic-Binding-Implementation
https://github.com/MEF-GIT/Example-LSO-Dynamic-Binding-Implementation

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 2

Dynamic binding is an approach in which supported product definitions can be on-boarded or re-

moved at runtime without the need to redeploy software components that support the validation

process. It is opposed to static binding approach in which selected product-specific definitions are

integrated within the functional API definition before the implementation starts.

Understanding this document requires a good knowledge of the envelope, product payload, static

and dynamic binding concepts and patterns. To acquaint with the, please refer to the MEF W87

LSO Cantata and LSO Sonata Product Offering Qualification API – Developer Guide, in particular

with chapters:

• 4.4 Approach

• 5.2.3 Integration of Product Specifications into Product Offering Qualification Manage-

ment API

This example implements the SDK Billie Release of Product Offering Qualification API but in-

stead of supporting all requirements defined in MEF W87 Developer Guide, it focuses only on

demonstrating how dynamic binding can be used to implement validation of incoming data against

additional modules added at run-time, it doesn't help actually implement the module-specific busi-

ness behavior.

3 Architecture

Conceptual architecture is presented in Figure 2 (simplified).

Figure 2 – Architecture

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/billie-final/documentation/productApi/serviceability/offeringQualification/MEF%20W87%20-%20LSO%20Cantata%20and%20LSO%20Sonata%20Product%20Offering%20Qualification%20API%20-%20Developer%20Guide.md
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/billie-final/documentation/productApi/serviceability/offeringQualification/MEF%20W87%20-%20LSO%20Cantata%20and%20LSO%20Sonata%20Product%20Offering%20Qualification%20API%20-%20Developer%20Guide.md
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/tree/billie-final
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/tree/billie-final
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/billie-final/documentation/productApi/serviceability/offeringQualification/MEF%20W87%20-%20LSO%20Cantata%20and%20LSO%20Sonata%20Product%20Offering%20Qualification%20API%20-%20Developer%20Guide.md
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/billie-final/documentation/productApi/serviceability/offeringQualification/MEF%20W87%20-%20LSO%20Cantata%20and%20LSO%20Sonata%20Product%20Offering%20Qualification%20API%20-%20Developer%20Guide.md

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 3

API Endpoint implements POQ endpoints defined in MEF W87. POQ Endpoint is using Product

Validation Service which is responsible for validating the payload against appropriate product

specification. The product specifications are served from Schema Repository. There is a Manage-

ment component that gives control over which product specifications are available in the platform.

The BSS System handles the actual business processing of the request.

4 Implementation

The example implements the abovementioned architecture in the following way:

• Management is implemented as a File Watcher – a specific file repository for product

yaml schemas. It is monitored for changes and new schemas are automatically parsed and

loaded into the Schema Repository

• Schema Repository – the central point. A place that acts as a logical store of all available

product specifications.

• Common Schemas Publisher – implementation-specific internal part of the repository that

stores the Common Schemas – the data model and dictionaries shared between the sche-

mas.

• Product Validation Service – a logical component used by the request processing logic to

validate incoming payload with supported schemas.

• WEB API Server that serves the MEF Product Offering Qualification API and uses the

Dynamic Schema Repository for the Product specific payload validation.

• BSS System – is not present and is replaced with a simple hard-coded response logic.

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/billie-final/documentation/productApi/serviceability/offeringQualification/MEF%20W87%20-%20LSO%20Cantata%20and%20LSO%20Sonata%20Product%20Offering%20Qualification%20API%20-%20Developer%20Guide.md

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 4

Figure 3 – Implementation

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 5

The functionalities supported by this example implementation are described in Figure 4:

Figure 4 – Application flow

1. New schema is put into the file system into the watch dir. This is done by some Seller

admin user.

2. The schema is noticed by the file watcher, interpreted, validated, and loaded into the

Schema Repository.

3. The Schema Repository uses the shared schemas available in Common Schemas Pub-

lisher and builds a single resolved schema for the product. After this step, the Product

Specification is available to use.

4. A Buyer sends a POQ Request with the new product specification.

5. The Server uses the product.productConfiguration.@type to identify the

proper schema in the Schema Repository.

6. The Server validates the request according to the schema found.

7. The response is provided with code 201 if successful, or an error response if the

schema is not found or the payload is not validated properly.

The WEB API Server uses the product.productConfiguration.@type property to

identify the schema needed to validate the product payload. The MEF standard product

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 6

specifications are identified by the @type in specific URN format:

urn:mef:lso:spec:sonata:access-eline:v2.0.0:poq, it contains:

• the name of the interface it applies: urn:mef:lso:spec:sonata

• the name of the product: access-eline

• version of the specification: 2.0.0

• function to which it applies (products may have different required attributes per dif-

ferent contexts like POQ or Order): poq

The schema is checked with every request. This means that the product specification can be dy-

namically and freely added or multiple versions can be supported.

5 Installation & Running

• Java 11 required

To configure and build the program, please do the following:

1. Create/choose a root monitoring directory and put its path to: src/main/re-

sources/application.yml (watch.dir key). The pre-configured is an ex-

isting empty directory: ./productSchema.

2. Run from CLI: mvn clean install – to build the application and produce the

result JAR file (in /target directory). It should generate single (fat) JAR, contain-

ing all compiled classes/resources + all dependencies, for example: dynamic-binding-

example-0.0.1-SNAPSHOT.jar

3. Run from CLI: java -jar target/dynamic-binding-example-0.0.1-

SNAPSHOT.jar – it will start the application

NOTE: alternatively, the program may be run from IDE mvn spring-boot:run

4. Open a Postman collection

(/extras/ProductOfferingQualificationManagement.postman_c

ollection.json) and send a POST request to check if the server is up and

running.

NOTE: One can also provide their own: product + common schemas

6 Use Cases

Use Cases listed below should be executed in presented order as they depend on each other.

First run the application as described above, without any modifications (empty

./productSchema and extras/main_schemas/ unchanged, or adapt to your changes if

any). This will start a server without any product specification loaded.

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 7

6.1 Use Case 1: Lack of product specification

• Open the provided Postman collection. There are two POST requests prepared.

• Run the Valid Request.

• Since there is no Product Specification loaded, the server response should be

Error422 with the message: No schema found for id=...

6.2 Use Case 2: Add the product specification

• The example request uses the Access Eline product with "$id":

urn:mef:lso:spec:sonata:access-eline:v2.0.0:poq.

• Copy the appropriate product specification accessElineOvc.yaml from

extras/main_schemas/accessEline/poq/ to the watch.dir

(/productSchema/).

• Product specification is automatically loaded into the Dynamic Schema Repository.

• Verify the fact by checking the application log output (Saved schema:
[urn:mef:lso:spec:sonata:access-eline:v2.0.0:poq ->

productSchema/accessElineOvc.yaml])

6.3 Use Case 3: New product specification support

• Now that the new product specification is supported, run again the Valid Request

from the Postman collection.

• This time the response should be 201 Created and a full server response pro-

vided.

6.4 Use Case 4: New product payload validation

• The second POST request available, the Invalid request, contains an intentional error

in line 28: colorMode has value WRONG_VALUE which does not match the field's

enumeration [COLOR_BLIND, COLOR_AWARE].

• The automatically generated code rejects this request based on the API specification

and throws an Error422 with appropriate message

("$.enniEp.ingressBandwidthProfilePerClassOfServiceName[0

].bwpFlow.colorMode: does not have a value in the

enumeration [COLOR_BLIND, COLOR_AWARE]")

7 Program Details

7.1 Product Schemas

MEF delivers product schemas in a way that the common parts shared among different products

are extracted to separate files. All actual product schemas are those that contain the "$id"

parameter available. All product schemas available in the Billie release are placed in the

extras/main_schemas/. This folder is not loaded automatically. From here the user can

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 8

copy and paste given schema into the watch_dir so that it can be dynamically loaded into the

Schema Repository. Note that the product specification comes in different flavors depending on

the context API (poq, quote, order, inventory) and it is reflected in the $id – this implementation

does not validate if the @type provided in the request is dedicated to POQ (this is not the point

of the example).

Schema files watcher/monitor

• When the program starts, it immediately starts to monitor the directory provided by

the user (watch.dir).

• The monitored directory can be populated by the user at any time – also before start-

ing the application.

• The monitor directory should contain product schemas (those containing $id prop-

erty).

• The program is not only capable to discover the creation/update/deletion of single

YAML schemas, but also discovers the whole directory structure (with schemas). In

that case, also the sub-directories are watched for changes.

• Generally, when the program discovers any filesystem change on the 'root directory'

or its descendants it:

o adds other sub-directories for further monitoring

o creates or updates one or many YAML schemas - in the repository

o removes one or many YAML schemas from the repository

• The system accepts JSON schemas in YAML format

7.2 Common Schemas

Schemas that do not contain the "$id" parameter and are referred to as the common schemas.

All common schemas available in the Billie release are placed in

src/main/resources/schemas/ and they are automatically loaded to the Common

Schemas Publisher at the application start.

• The product schema may consist of links ($ref's) to the other, common schemas –

and these may also have links to other ones, etc. Product and common schemas are

composed together to form a single, fat schema – which finally – goes to the reposi-

tory.

• The application utilizes 3rd party software for schema validation: json-schema-

validator which doesn't support local/filesystem $ref links – only URLs are

supported. That's the reason the common schemas are published by the webserver.

This also required modification of the MEF original schemas so that the $ref uses

URLs instead of local references.

• To properly serve all common schemas – a Schema REST controller is introduced

which publishes the schemas as static content (under Tomcat webserver).

7.3 Schema Repository

• Holds YAML schemas for further use. Each schema repository item contains:

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 9

o unique schema ID

o monitored file path

o fully composed JSON schema content as JsonSchema object

• Supports basic CRUD operations on the repository

• Uses builtin Spring key-value cache

7.4 Codegen

• CodeGen is used to generate the code and API from the 'Swagger/OpenAPI'

document. This example utilizes the Sonata POQ:

(src/main/resources/productOfferingQualificationManagemen

t.api.yaml)

• This file is pointed in pom.xml in the property of openapi-generator-
maven-plugin

• The CodeGen is instructed to generate only Web API. The REST controllers (imple-

menting the API) are provided by this program as custom ones.

• The CodeGen is also configured to not produce very important model object:

'MEFProductConfiguration'. Also here, the custom version is provided by the applica-

tion.

• Custom 'MEFProductConfiguration' object should consist of:

o @type property – containing the ID of the validation schema

o any JSON content/payload – which is to be verified by the validation

schema

 Example Implementation of the Dynamic Binding for the MEF LSO APIs

 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the follow-
ing statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to

modify any of the information contained herein.

Page 10

8 Future Considerations

At the time of this example's implementation, the MEF Catalog API was not available. Thus there

was no standardized process of Product Specifications' exchange. Product specifications are pro-

vided by MEF as part of the standard documents and also in the releases of the SDKs as YAML

coded JSON documents. The Seller can exchange the list and details of offered products during

the onboarding process. The example assumes that a standard MEF product is used and that the

Buyer already has the specification.

Once the Catalog API is available, the Seller can expose the specification and offering via an API

from where the Buyer can easily pick it.

The example diagram of the target architecture is presented in Figure 5:

Figure 5 – Architecture with Catalog API

9 Support

This example implementation is provided as open-source and MEF members are free to further

improve it or provide fixes.

If you have any questions, please contact:

Michał Łączyński, Amartus

michal.laczynski@amartus.com

mailto:michal.laczynski@amartus.com

