

MEF 120

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

MEF Standard

MEF 120

Lean NFV Overview and Framework

May 2022

MEF 120

© MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Disclaimer

© MEF Forum 2022. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient

and is believed to be accurate as of its publication date. Such information is subject to change

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume

responsibility to update or correct any information in this publication. No representation or

warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or

applicability of any information contained herein and no liability of any kind shall be assumed by

MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or

user of this document. MEF is not responsible or liable for any modifications to this document

made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication

or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or trade

secret rights held or claimed by any MEF member which are or may be associated with the

ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s) and/or

service(s) related thereto, or if such announcements are made, that such announced product(s)

and/or service(s) embody any or all of the ideas, technologies, or concepts contained herein;

nor

c) any form of relationship between any MEF member and the recipient or user of this document.

Implementation or use of specific MEF standards, specifications, or recommendations will be

voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF

Forum. MEF is a non-profit international organization to enable the development and worldwide

adoption of agile, assured and orchestrated network services. MEF does not, expressly or

otherwise, endorse or promote any specific products or services.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page iii

Table of Contents

1 List of Contributing Members ... 1

2 Abstract .. 2

3 Terminology and Abbreviations .. 3

4 Compliance Levels .. 4

5 Introduction ... 6

6 Lean NFV Architecture .. 8

6.1 Key components .. 8
6.2 Lean NFV in relation to ETSI NFV .. 10
6.3 The scope of this Standard... 11
6.4 Outside the scope this Standard ... 11

7 Design Principles ... 13

8 Lean NFV in the LSO Architecture .. 14

9 Business Drivers .. 15

9.1 Revenue Expansion ... 15
9.2 Enhanced Customer Experience .. 15
9.3 Cost Competitiveness .. 16
9.4 User Motivation ... 16

10 Use Cases.. 17

10.1 Use Case – Secure Access Service Edge (SASE) ... 17
10.2 Use Case – Enterprise Edge... 17
10.3 Use Case – NFV Platform ... 18

11 References .. 20

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page iv

List of Figures

Figure 1 – Key-Value Store .. 9
Figure 2 – Lean NFV Sample Architecture .. 10
Figure 3 – Lean NFV in LSO ... 14
Figure 4 – SASE Use Case for Lean NFV .. 17
Figure 5 – Enterprise Edge Use Case ... 18
Figure 6 – NFV Platform Use Case .. 19

List of Tables

Table 1 – Terminology and Abbreviations ... 4

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 1

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have

requested to be included in this list.

• Amartus

• Lumen Technologies

• Nefeli Networks

• Spectrum Enterprise

• Verizon

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 2

2 Abstract

Lean NFV represents an approach to implementing Network Functions Virtualization in the

context of MEF LSO. NFV solutions have become fundamental in moving network functions to

the Edge (where by Edge we mean a compute stack not in the cloud core, up to and including the

premises edge). Lean NFV offers a uniform approach to integrating different components involved

in NFV using MEF LSO APIs.

Lean NFV takes an approach of reducing the difficult task of integration that usually accompanies

disaggregation, relying on a Key-Value Store (KVS)-like function as the universal point of

integration and using a plug-in approach to the computing infrastructure. Lean NFV reduces

reliance on monolithic controllers and other NFV elements so that independently developed

components work together, whether they run in customer premises equipment (uCPEs), the

network edge (public or private), data centers, or even the cloud core.

The purpose of this document is to define Lean NFV in the context of the MEF 55.1 LSO

Framework [3]. In this document, Lean NFV effects the functions of Infrastructure Control and

Management. In this context it serves as a vehicle to instantiate two LSO APIs: Presto and Adagio.

This document introduces the concept, provides a framework for the details (internal APIs and

schema), and establishes principles that guide its design. The goal is to enable network operators

to offer more customized services to their customers and to transform their businesses to adopt a

software-first mindset.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 3

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to

terms are found in other documents. In these cases, the third column is used to provide the

reference that is controlling, in other MEF or external documents.

Term Definition Reference

API Application Programming Interface This document

Application

Programming

Interface

A computing interface that defines interactions

between multiple software intermediaries

MEF 55.1 [3]

CNF Containerized Network Function This document

Containerized

Network Function

A VNF or VNF component designed to be

deployed and managed on Container

Infrastructure Service (CIS) instances

ETSI NFV

Release 4 [6]

Infrastructure The computing elements and communication

fabric in an implementation of Lean NFV

This document

Kubernetes An open-source system for automating

deployment, scaling, and management of

containerized applications

Linux

Foundation [5]

KVS Key-Value Store This document

Key-Value Store A well-known term in the industry for a data

structure designed for storing, retrieving, and

managing associative arrays, where data objects

are stored, indexed by keys. In the context of

LSO, an implementation of Infrastructure Control

and Management (ICM).

This document

Lean NFV An open architecture approach to NFV based on a

single point of integration and a common

interface to that point of integration for all NFV

components

This document

LRS Lean NFV REST Server This document

Lean NFV REST

Server

A REST server that provides CRUD (Create,

Read, Update, Delete) and watch access to the

KVS, and performs validation on all write

operations as well as standard hooks for

authentication, authorization and audit

This document

MANO Management and Orchestration This document

Management and

Orchestration

Framework for the management and orchestration

of all resources in a virtualized data center

[10]

Network Function A network-related operation, which includes

VNFs and CNFs but in this document not

physical network functions (PNFs)

This document

NF Network Function This document

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 4

Term Definition Reference

Network Function

Virtualization

A network architecture concept that uses the

technologies of IT virtualization to virtualize

entire classes of network node functions into

building blocks that may connect, or chain

together, to create communication services

ETSI NFV

White Paper [2]

NFV Network Function Virtualization This document

NFVI NFV Infrastructure This document

NFV Infrastructure The physical resources and accompanying

software where computing, storage, and

networking resources with which VNFs are

deployed

SDxCentral

NFV Definitions

[13]

NFVO NFV Orchestrator This document

NFV Orchestrator A component of MANO that orchestrates

compute, storage, and network resources for

VNFs and virtualized network services

SDxCentral

NFV Definitions

[12]

SD-WAN An acronym for software-defined networking

(SDN) in a wide area network (WAN)

MEF 70.1 [4]

VIM Virtual Infrastructure Manager This document

Virtual

Infrastructure

Manager

Management component responsible for

controlling and managing the NFV infrastructure

(NFVI) compute, storage, and network resources,

usually within one operator’s infrastructure

domain

SDxCentral

NFV Definitions

[7]

VNF Virtualized Network Function This document

Virtualized Network

Function

A software implementation of a network function

that can be deployed on a Network Function

Virtualization (NFV) Infrastructure

ETSI NFV

White Paper [2]

VNFM VNF Manager This document

VNF Manager A component of MANO that provides lifecycle

management for VNFs

SDxCentral

NFV Definitions

[11]

Table 1 – Terminology and Abbreviations

4 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119 [8],

RFC 8174 [9]) when, and only when, they appear in all capitals, as shown here. All key words

must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for

required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 5

are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or

OPTIONAL) are labeled as [Ox] for optional.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 6

5 Introduction
The advantages of virtualization, long valued for computing, are now being applied to

networking, generally under the rubric of Network Functions Virtualization, or NFV. These

benefits include greater vendor choice from unbundled solutions, greater flexibility with

independent software for control and management including centralized control governed by

policy, the price-performance advantages of commercial off-the-shelf (COTS) hardware

platforms, and greater network visibility. Since the concept was introduced in 2012 [2], NFV

solutions have become fundamental in moving network functions to the edge. The corresponding

Virtualized Network Functions (VNFs) or Containerized Network Functions (CNFs) now span

across all major networking functionalities, including (or especially) security. At the same time,

adoption has been hampered by a number of integration and flexibility challenges:

• Current NFV solutions are complex to deploy, because functions such as the Virtual

Infrastructure Manager (VIM) are often implemented in closed and monolithic packages

closely coupled to the physical infrastructure rather than its abstraction, preventing an NFV-

related task from being treated as just another workload.

• Components within a monolithic controller cannot be replaced, or chosen, by the customer.

• The interfaces within a monolithic controller are specific to the solution and subject to

proprietary development and innovation schedules.

NFV solutions are complex to automate because coordination is done through a number of

pairwise APIs that, even if standard, are specific to the components they connect and their function.

Specific examples include:

• functions such as chaining, configuration, scaling, and failover implemented by NFV managers

and associated VNFs

• the components of the VNF manager(s).

Rather than a single monolithic controller (MANO), Lean NFV offers a collection of “micro-

controllers”, each tackling one aspect of NFV management and orchestration (such as

configuration, scaling, or monitoring).

Lean NFV is an approach to NFV based on a common interface to a single point of integration for

all NFV components. The single point of integration operates like a Key-Value Store (KVS), and

a Lean NFV REST Server (LRS) abstracts its operation and communicates with all the NFV

components using the common interface.

Lean NFV is targeted at operators (including service providers, such as SaaS companies,

communication service providers, digital service providers, private cloud operators, and public

cloud providers) looking to build new services utilizing NFV technology on their choice of bare-

metal, hypervisor-based, or container-based realizations; system integrators looking to provide

professional services in support of these implementations; and designers of VNFs looking to

enable deployment of the new services. By implementing the standard Lean NFV API, VNF and

micro-controller designers can develop products ready for widespread inclusion in dynamic

service chains without modification of such common tasks as placement, launching, performance

and health monitoring, and licensing that are not specific to the functions of the VNF or micro-

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 7

controller. (Tasks specific to these functions, such as producing a set of rules for a firewall or a set

of paths for a router, still require specific knowledge on the part of a software module or human

operator.)

Note that Lean NFV applies equally to both VNFs and CNFs so throughout this document any

reference to VNFs implicitly includes CNFs.

• Section 6 in this document describes the Lean NFV architecture, relates it to ETSI NFV,

and describes the objectives of this standard.

• Section 7 articulates the design principles.

• Section 8 positions Lean NFV in the MEF LSO architecture.

• Section 9 describes the business drivers.

• Section 10 provides some relevant use cases.

• Section 11 lists some useful references.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 8

6 Lean NFV Architecture

Lean NFV’s open architecture is designed to manage a multi-vendor ecosystem for NFV. As

outlined in the MEF Lean NFV white paper [1], the core observation underlying the Lean NFV

approach is that the basic NFV components – the NFV Management and Orchestration (NFV

MANO), which includes the Virtualized Infrastructure Manager (VIM), the VNF Manager

(VNFM), and the NFV Orchestrator (NFVO), the NFV Infrastructure (NFVI), and the Virtualized

Network Functions (VNFs) – are well understood as individual components, but that current NFV

designs have failed to integrate them in a simple and consistent manner and have treated them too

monolithically. To enable greater flexibility and the choice of best-of-breed elements, Lean NFV

deconstructs the larger control components into smaller ones called micro-controllers and

introduces a new component to the NFV architecture: a KVS-like function that is wrapped by a

Lean NFV REST Server (LRS). The KVS, accessible through the LRS, serves as the universal

point of coordination between all other components, specifically the VNFs and micro-controllers.

It stores status, configuration, and operational parameters that the VNFs and micro-controllers

need to effect control, management, and monitoring. VNFs and micro-controllers can read data

from or write data to the KVS using a standard API and without knowing or having to directly

communicate with other entities that might use the data. (The ETSI NFV architecture [6] defined

pairwise APIs that were specific to the function of the components that communicated with each

other, making it hard to deploy and innovate.) The LRS API provides a clean single interface with

which to exchange information between any pair of components.

6.1 Key components

The key components of the Lean NFV architecture are:

• The Lean NFV REST Server (LRS), which is the main point of integration, assuring

authentication, authorization, and accounting (AAA) that abstracts the KVS-like function of

the data store.

• The KVS-like function, which acts as a data store for state and configuration information

needed by all components. No implementation is mandated or implied in this document.

Other data stores are possible but a KVS-like storage offers the advantages of lightweight

code, efficient change management, and easy implementation for high availability and

disaster recovery.

• A virtual switch that is deployed for data-plane connectivity.

• The management micro-controllers that are modular in nature and together perform the NFV

Orchestrator (NFVO), VNF Manager (VNFM), and Virtual Infrastructure Manager (VIM)

functions.

• The VNFs and CNFs and any necessary corresponding Element Management Systems

(EMS), all of which can come from any source.

• The common API by which the LRS, micro-controllers, and NFs communicate. Inherent in

this API standard are the data models for conveying the data to and from the LRS.

The LRS stores data objects used by the VNFs and the micro-controllers. There are three main

categories of such data objects:

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 9

1. Those that are understood by the micro-controllers but not the VNFs, such as where to place

a VNF or what it takes to scale VNFs or create new instances, in other words objects not

related to the specific nature and function of a VNF. This feature fosters the development of

micro-controllers that perform functions on VNFs regardless to which specific VNFs they

apply.

2. Those that are understood by the VNFs but not the micro-controllers, such as firewall rules or

other details specific to the nature and function of a VNF. This feature fosters the development

of VNFs that do not need to be customized for their operating environment.

3. Those that are understood by both the VNFs and the micro-controllers, such as where licenses

are found and certain high-level configuration states. This feature enables VNFs to deal with

some generic tasks in a consistent manner.

Note that the KVS might not be the best place to directly store fast-changing or high-volume

telemetry data. It would be better suited for a time-series database, of which there are many

examples. The KVS might store a pointer to that database to include information on where to find

the database, which metrics are relevant, and possibly credentials for accessing the database.

In the figure below, a simple KVS is shown along with a subset of its features. Note that the data

shown in the Values column is not uniform in type or extent. This feature makes the KVS suitable

for storing state, configuration information, and other widely varying types of data that might be

associated with a wide variety of VNFs and used by a wide variety of micro-controllers, as

mentioned in the bulleted list above. VNFs and micro-controllers can write data to and read data

from the KVS without communicating directly with each other and without knowing how each

other might be implemented.

Figure 1 – Key-Value Store

The overall Lean NFV architecture may be viewed in Figure 2 – Lean NFV Sample Architecture.

The infrastructure piece shown in the figure incorporates the compute, storage, and networking

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 10

infrastructure on which the Lean NFV components run. There is no special interface to the

infrastructure for Lean NFV so the thick arrow between virtual switch and the infrastructure

represents the usual data paths between compute, storage, and networking elements as designed

for the performance required.

Introduction of a new, independently created VNF involves describing it (abstractly) in the KVS,

where the appropriate micro-controllers can both discover it and use it as desired. Once licensed,

placed, and properly configured, it becomes available for inclusion in service chains. Similarly,

introduction of a new, independently created micro-controller requires no effort of the part of the

VNFs; the micro-controller discovers the VNFs it can operate on and they respond as they would

to any micro-controller, through the abstraction of the KVS. Lean NFV does not change the need

to properly instantiate VNFs or micro-controllers; it only simplifies their interaction.

Figure 2 – Lean NFV Sample Architecture

6.2 Lean NFV in relation to ETSI NFV

NFV was launched in ETSI in 2012 [2] and Lean NFV derives the principles of NFV from the

ETSI effort. The architectures differ in that ETSI NFV compartmentalized the components into

functional groupings and defined a number of bilateral APIs between them, resulting in

considerable effort to introduce independent components, many of which have to be custom

designed for their deployment environment. Lean NFV relies on a single API for all components,

resulting in their simplified design and reduced customization. This makes it particularly easy to

dynamically create arbitrary service chains by instantiating library NFs as needed. The functional

groupings of VIM, VNFM, and NFVO are shown in the above figure only to help those familiar

with ETSI NFV relate Lean NFV to it. The micro-controllers shown therein represent independent

entities all sharing the same API to the LRS, so the functional groupings carry no particular

meaning and can be disregarded as elements of the Lean NFV architecture.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 11

6.3 The scope of this Standard

This document (Lean NFV Overview and Framework) introduces the concepts and terminology

of Lean NFV and positions Lean NFV in the LSO architecture, specifically showing that the

northbound API from the LRS is an instance of MEF LSO Presto and the southbound API from

the LRS is one or more instances of MEF LSO Adagio.

This document introduces the notion that VNFs can use the LRS APIs to facilitate their runtime

management, meaning common runtime functions like configuration, monitoring, and scaling but

it does not describe how they do this. Ideally, these functions would be implemented by a general

NFV manager. However, in many of today’s VNFs these functions are supplied by vendor-specific

Element Management Systems (EMSs). As shown in Section 7 it is important that any easily

deployable yet future-proof architecture support both modes of management. Accordingly, Lean

NFV is designed to allow developers of new VNFs to build new streamlined ones (streamlined

because they outsource common runtime tasks to general managers) while also allowing

developers of existing VNFs to incrementally transition to using general NFV management. This

allows operators to pick and choose between the above modes of management on a per-VNF basis

and to gracefully integrate Lean NFV into existing NFV infrastructures.

6.4 Outside the scope this Standard

This Standard does not include the schema of the Lean NFV APIs (LSO Adagio and Presto),

sample functionality for the microcontrollers, sample code for a Lean NFV network function, the

specific data types stored in the KVS, or the specific data models by which the data are represented.

(This standard introduces only the framework and architecture of Lean NFV and the general

categories of data stored in the KVS.)

Beyond the scope of this Standard is the minimal set of changes to VNFs needed to simplify basic

runtime management tasks such as configuration, licensing, and basic monitoring (which in turn

can trigger actions such as scaling, healing, and chaining), as well as additions to enable more

advanced management capabilities, such as diagnostics, analytics, and state management.

Also not included in this standard are supporting tools that ease the development of VNFs that are

natively adapted to Lean NFV (meaning they are built to use Adagio to communicate with the

LRS), such as:

• A tool that accepts, as input, descriptions in either source code form or in an interface

definition-language (IDL) such as Protobuf and generates code to generate and register a

variety of data representations and to automatically encode data using these

representations.

• A tool that accepts, as input, definitions of high-level data objects and generates an

implementation using the low-level APIs that publish all publicly accessible members

and subscribe to types corresponding to methods. This provides functionality akin to an

object-relational mapping (ORM) tool.

• Debugging tools that reconstruct causal history for the interactions between the NFV

Manager and individual VNFs. Among other things this can be used to debug cases in

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 12

which translating from declarative configurations to imperative commands used by

current VNFs results in errors.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 13

7 Design Principles

Lean NFV embraces two important goals: making it easier to deploy NFV at any given point in

time while allowing for rapid and ongoing innovation in the future. This requires that Lean NFV

start with a set of minimal changes to traditional approaches to NFV while laying the foundation

for deeper and ongoing innovation. Lean NFV does so through three design principles:

1. Open architecture: An open architecture, in which independently developed components

interact using a common, standard API, enables the industry to innovate with different

approaches to issues such as configuration and isolation (and micro-controllers in general).

2. Clean separation between VNFs and all other components: Such a clean separation enables

vendors to write VNFs without knowing in advance about the inner workings of the NFV

manager, the VIM on which it will be deployed, the other VNFs with which the VNF

coexists, or the NFV service chain within which it operates. With this level of separation,

these other components can be changed without having to rewrite VNFs. Ideally a network

function will be instantiated many times in its life over different service chains of limited

lifespan.

3. Minimal constraints on VNF implementations and micro-controllers: Lean NFV supports

flexibility in all NFV components by not stipulating how VNFs and micro-controllers are

implemented. This can be done by specifying only how VNFs and micro-controllers integrate

into the overall system, not whether they are realized in VMs or containers, or whether they

are monolithic or highly disaggregated, or which functions are handled by EMSs and which

by the general NFV manager.

Barriers to NFV deployment such as needing to adopt a VNF-specific VIM (or an NFV-specific

virtualization orchestrator) and impediments to innovation (such as the lack of a common API

among components) inhibit the virtualization of networks. Lean NFV is an attempt to avoid these

challenges by focusing on a single universal mechanism for coordination (the LRS API) and

having a clean separation of concerns between the various components. As a result, one can adopt

Lean NFV with minimal changes to existing VNFs (only modified to use the KVS for their control

plane), while allowing a spectrum of future implementations.

For instance, Lean NFV implementations could include VNFs running under an existing VIM

(with an NFV manager providing the runtime functionality), in container-based implementations

(using varying degrees of built-in management functionality), as highly disaggregated VNFs rather

than large monolithic ones, or as stateless implementations where all VNF state is kept in the KVS

and accessed via the LRS API. This flexibility would, in turn, bring additional benefits as it would

allow streamlined NFV infrastructures, fully optimized for the specific context (e.g., Edge,

customer premises, etc.)

The goal of Lean NFV is to define an open architecture where many of these futures can be realized

through incremental evolution, starting with current VNFs and VIMs. Hence, this Standard focuses

on a minimal set of changes that VNF writers can embrace that offer immediate benefits while

simultaneously laying the foundation for many of the longer-term changes that will ultimately be

necessary. The immediate benefit is the option to leverage a general NFV manager for common

runtime management tasks.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 14

8 Lean NFV in the LSO Architecture

A key objective in Lean NFV is to co-exist with other implementations of LSO utilizing different

architectures by integrating through the appropriate LSO APIs and preserving their well-chosen

abstractions. Lean NFV can be used for a range of use cases, such as for services offered at the

enterprise edge, as an NFV platform, and for 5G-related services, primarily at the edge. Lean NFV

supports orchestration and management functions via the Presto API (northbound of the LRS to

allow a higher-level orchestrator to manage physical or virtual devices as abstractions via the LRS)

and the Adagio API (as the common interface to the LRS from the network functions and micro-

controllers); see Figure 3 – Lean NFV in LSO.

Figure 3 – Lean NFV in LSO

The most important points to note about Lean NFV in LSO are these:

• Having Lean NFV in one domain does not constrain any other domain.

• The LRS serves as an implementation of Infrastructure Control and Management (ICM).

• The Service Orchestration Function (SOF) interacts with the LRS using the LSO Presto

API, as it does with other instances of ICM.

• The LRS interacts with the Lean NFV elements (see Figure 2 – Lean NFV Sample

Architecture) using instances of the Adagio API. This contrasts with the traditional and

SDN approaches on the left in which traditional controllers, SDN controllers, and network

elements interact using a variety of APIs and protocols, including RIP, OSPF, BGP, MPLS

LDP, STP, OpenFlow, SNMP, Netconf, and others. Significantly, these are usually

pairwise APIs and protocols even if they are standard and thus not proprietary. Note that

when necessary these existing interactions can be encapsulated and transported across a

Lean NFV instance of ICM.

Mobile

Commercial

Cloud Service Provider Internet Cloud

Conventional or SDN Lean NFV

Residential

FRA M EW O RK FRA M EW O RK

Inter-Carrier

APIs

Customer

Facing APIs

Allegro

Cantata

Interlude

Sonata

Adagio

Business Applications Business Applications

Legato Legato

Presto Presto

Service

Orchestration

Service

Orchestration
Cloud

Facing

Self-service
Web Portal

Data Center

Infrastructure Control

& M anagement – LRS
Infrastructure Control

& Management – Traditional

Proprietary or

Pairwise APIs
µCntrl

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 15

9 Business Drivers

The adoption of Lean NFV by the target user community is based on key business drivers of:

• Revenue expansion

• Enhanced customer experience

• Cost competitiveness

These are discussed in the following subsections

9.1 Revenue Expansion

Revenue expansion is generally achieved in two ways, through the timely addition of new services

and the fast enhancement of existing services. Lean NFV supports revenue expansion in both ways.

By making the NFs and micro-controllers independent of each other and enabling an open

ecosystem, service providers can launch new services more quickly. While the enterprise edge use

case is described in Section 10 (Use Cases), other services to which Lean NFV applies include

fixed wireless and security services.

To enhance existing services, Lean NFV provides stand-alone management of the resources and

services allocated to it. Lean NFV is intended to integrate easily through the MEF APIs with other

orchestrators or an OSS/BSS (Operational Support System/Business Support System), without

disrupting existing implementations using other technologies. This plug-in capability of functions

implemented as micro-controllers therefore means that users can protect their existing investment

in established services, while using Lean NFV to provide expanded capabilities.

Finally, Lean NFV provides a strong transition to emerging technologies and environments, such

as cloud-native computing and containers instead of virtual machines because any component can

be implemented or updated independently of the other components.

9.2 Enhanced Customer Experience

At the core of a successful service is an enhanced customer experience. Lean NFV enables this in

two important ways. First, Lean NFV enhances the ease and speed of introducing virtual network

functions and micro-controllers by an operator, which enables broader customer choice of network

services and service features and promotes the creation of novel network functions that can be

written once and deployed anywhere for greater service agility. Indeed, the adoption of Lean NFV

could lead to a flourishing new open market for independently written network functions. For

example, a service provider can give its customers a range of SD-WAN and security choices in an

enterprise edge deployment, as they are all integrated quickly in the same way and are not

dependent on other components. Upon customer request for a new service or feature, a new NF

can be added in a short amount of time to the existing NFV implementation. Second, modular

management (modular because there are no interdependencies between the NFs or the micro-

controllers beyond their abstracted characteristics) makes automation much easier.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 16

9.3 Cost Competitiveness

Lean NFV can improve the cost structure of an NFV implementation in three ways. First, by

detaching the software from the hardware decisions (a basic feature of NFV), service providers

can take advantage of a broader range of white-box hardware. Second, the simple abstractions in

the KVS, and the KVS itself, can translate to less overhead, be it fewer cores, fewer or smaller

servers, or simpler management. All other factors being equal, this reduction in infrastructure

resources can translate to direct savings for operators and their customers. Finally, the standard

abstractions and open framework translate to substantially lower customization services and

support costs.

9.4 User Motivation

Ultimately user motivation can be summarized in the desire to accelerate the deployment of new

capabilities (time to market) and reduce operating costs (total cost of ownership). These objectives

are achieved by:

• Hosting new services

• Enabling an all-software networking (NFV) solution

• Seamlessly combining capabilities from different providers of network functions by

creating service chains utilizing VNFs and CNFs from a variety of sources

• Leveraging standard models representing NFV components and open APIs

• Automating configuration, operation, and change management functionality

• Managing networking across their public cloud environments jointly with their on-

premises installations.

The following benefits can be achieved with a Lean NFV implementation:

• Distributed: operate across multiple environments, including cloud native, private cloud,

PoPs, and branch

• Flexible: use network functions from any source – VNFs, CNFs, open source, and custom

• Policy-driven: apply simple high-level service definitions across environments

• Elastic: via the modularity that provides optimal resource utilization

• Visible: gain data plane visibility to enable direct measurement and reporting of key

metrics.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 17

10 Use Cases

Lean NFV can be deployed beneficially wherever NFV makes sense, as these use cases show.

10.1 Use Case – Secure Access Service Edge (SASE)

An enterprise or a service provider adopts Secure Access Service Edge (SASE) to provide both

SD-WAN-like flexibility and efficiency in the underlay connectivity and the best forms of

enterprise security in an environment where the attack surface is very large. Security functions

could be located in a variety of places, from customer premises and other remote sites to corporate

data centers, metropolitan edge locations, and the Cloud. Orchestrating these functions in disparate

locations, provisioning them, and chaining them across an expansive SASE domain suits the use

of Lean NFV well. The VNFs and micro-controllers that access the LRS, and the LRS itself, are

not bound to any particular location, especially the same location; they only need to be reachable

via the usual means, which the infrastructure provides.

The figure below shows security functions in a SASE environment residing in the CPE, at the

network edge, and in the public cloud. These can be orchestrated through an LRS at any location.

Figure 4 – SASE Use Case for Lean NFV

10.2 Use Case – Enterprise Edge

A service provider wants to enable a new service – some enterprise edge service, say – whereby

enterprise customers can outsource networking functions to the service provider. The service

provider will host their services in their DC, a public cloud, or white-box hardware on the customer

premises (servers, uCPEs). With Lean NFV, the LRS – and typically the micro-controllers – run

in the cloud or DC and the VNFs can be located in the cloud or DC or on the customer premises,

to realize on-demand services such as SD-WAN, virtual firewalls (vFW) and other security

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 18

components. This arrangement permits the service provider to easily onboard VNFs and efficiently

locate or move them around as needed in a distributed cloud computing environment. See the

figure below for a graphical illustration of this scenario.

Figure 5 – Enterprise Edge Use Case

10.3 Use Case – NFV Platform

A SaaS provider wants to evolve their platform to work across multiple environments, such as

public cloud and private data centers. The SaaS provider would also like to leverage commercial

virtualized network functions such as firewalls, load balancers, routing, switching, and SD-WAN

termination. Lean NFV can be deployed at the edge of the SaaS instance, whether that means

hosted in the public cloud or in a data center, and can host all of the aforementioned functions. The

SaaS provider can therefore drive consistent policy, make real-time changes, and obtain consistent

visibility across environments. Lastly, an additional benefit is the ability to host customer-

proprietary functionality on the platform as VNFs or CNFs, thereby offloading operational

functionality such as high availability, monitoring, etc. The figure below illustrates this example.

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 19

Figure 6 – NFV Platform Use Case

 Lean NFV Overview and Framework

MEF 120 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 20

11 References

[1] MEF, Simplifying NFV Operations in the WAN with LSO and Lean NFV – White

Paper, June 2020

[2] ETSI Network Functions Virtualisation – Introductory White Paper, October 2012

[3] MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and

Framework, February 2021

[4] MEF 70.1 SD-WAN Service Attributes and Service Framework, August 2020

[5] Linux Foundation: Kubernetes API Overview, API Version 1.22.0, August 8, 2021

[6] ETSI Specification: ETSI GS NFV-IFA 040 v4.1.1, Network Functions Virtualisation

(NFV) Release 4; Management and Orchestration; Requirements for service interfaces

and object model for OS container management and orchestration specification,

November 2020

[7] SDxCentral NFV Definitions: What is the Virtualized Infrastructure Manager (VIM)?

Definition, March 25, 2016

[8] Internet Engineering Task Force RFC 2119, Key words for use in RFCs to Indicate

Requirement Levels, March 1997

[9] Internet Engineering Task Force RFC 8174, Ambiguity of Uppercase vs Lowercase in

RFC 2119 Key Words, May 2017

[10] SDxCentral NFV Definitions: What is NFV MANO? Definition, October 9, 2014

[11] SDxCentral NFV Definitions: What is a VNF Manager (VNFM)? Definition, March 25,

2016

[12] SDxCentral NFV Definitions: What is an NFV Orchestrator (NFVO)? Definition,

March 21, 2016

[13] SDxCentral NFV Definitions: What is NFV Infrastructure (NFVI)? Definition, April

27, 2016

	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Compliance Levels
	5 Introduction
	6 Lean NFV Architecture
	6.1 Key components
	6.2 Lean NFV in relation to ETSI NFV
	6.3 The scope of this Standard
	6.4 Outside the scope this Standard

	7 Design Principles
	8 Lean NFV in the LSO Architecture
	9 Business Drivers
	9.1 Revenue Expansion
	9.2 Enhanced Customer Experience
	9.3 Cost Competitiveness
	9.4 User Motivation

	10 Use Cases
	10.1 Use Case – Secure Access Service Edge (SASE)
	10.2 Use Case – Enterprise Edge
	10.3 Use Case – NFV Platform

	11 References

