

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any

of the information contained herein.

MEF Standard

MEF 95

MEF Policy Driven Orchestration (PDO)

July 2021

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify any

of the information contained herein.

Disclaimer

© MEF Forum 2021. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient

and is believed to be accurate as of its publication date. Such information is subject to change

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume

responsibility to update or correct any information in this publication. No representation or

warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or

applicability of any information contained herein and no liability of any kind shall be assumed by

MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or

user of this document. MEF is not responsible or liable for any modifications to this document

made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication

or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or

trade secret rights held or claimed by any MEF member which are or may be associated

with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)

and/or service(s) related thereto, or if such announcements are made, that such

announced product(s) and/or service(s) embody any or all of the ideas, technologies, or

concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this

document.

Implementation or use of specific MEF standards, specifications, or recommendations will be

voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF

Forum. MEF is a non-profit international organization to enable the development and worldwide

adoption of agile, assured and orchestrated network services. MEF does not, expressly or

otherwise, endorse or promote any specific products or services.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page iii

Table of Contents

1 List of Contributing Members ... 1

2 Abstract .. 2

3 Terminology and Abbreviations .. 3

4 Compliance Levels .. 9

5 Numerical Prefix Conventions ... 9

6 Introduction ... 10

7 Introduction to Policy Management and Orchestration ... 11

7.1 Controlling Behavior Using Policies ... 11
7.1.1 Groups of Policies and the Use of Roles ... 12
7.1.2 Can Multiple Policies Apply to a Single Object? .. 12
7.1.3 Policy Subjects and Targets ... 12
7.1.4 Authorization vs. Obligation Policies .. 12

7.2 The Policy Continuum ... 13
7.3 Proving the Correctness of a Policy .. 15
7.4 Policy Usage in the MEF LSO RA .. 15

8 MEF Policy Model (MPM) ... 18

8.1 The Purpose of a Policy Model ... 18
8.2 How Policy is Modeled ... 18
8.3 Naming Rules .. 19
8.4 Overview of the MCM .. 21

8.4.1 The Top Portion of the MCM .. 21
8.4.2 The Use of Metadata .. 23
8.4.3 MCM Compliance ... 25

8.5 Design Approach of the MPM... 26
8.5.1 PolicyContainer.. 26
8.5.2 Types of Policies .. 27

8.5.2.1 Imperative Policies ... 27
8.5.2.2 Declarative Policies ... 28
8.5.2.3 Intent Policies ... 29

8.6 MCMPolicyObject... 32
8.7 The MPMPolicyStructure Hierarchy ... 32

8.7.1 MPMPolicyStructure Class Definition .. 33
8.7.2 MPMPolicyStructure Relationships... 43

8.7.2.1 The MPMPolicyHasMPMPolicySource Aggregation .. 43
8.7.2.2 The MPMPolicyHasMPMPolicyTarget Aggregation .. 44
8.7.2.3 The MPMPolicyHasMPMPolicyStatement Aggregation ... 44

8.7.3 MPMPolicyStructure Subclasses ... 45
8.7.3.1 MPMImperativePolicy Class Definition .. 45

8.7.3.1.1 MPMECAPolicy Class Definition ... 47
8.7.3.1.2 MPMCommandPolicyRule Class Definition... 49

8.7.3.2 MPMDeclarativePolicy Class Definition... 50
8.7.3.3 MPMIntentPolicy Class Definition .. 51

8.8 MPMPolicyComponentStructure Class Hierarchy .. 53
8.8.1 MPMPolicyComponentStructure Class Definition... 53

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page iv

8.8.2 MPMPolicyComponentStructure Relationships .. 53
8.8.3 MPMPolicyComponentStructure Subclasses: MPMPolicyStatements 54

8.8.3.1 MPMPolicyStatement Class Definition .. 54
8.8.3.1.1 The MPMPolicyHasMPMPolicyStatement Aggregation .. 62
8.8.3.1.2 The MPMStatementHasMPMPolicyClause Aggregation ... 62

8.8.3.2 MPMBooleanStatement Class Definition... 63
8.8.3.3 MPMAssertionStatement Class Definition ... 65
8.8.3.4 MPMEncodedStatement Class Definition .. 67
8.8.3.5 MPMTheorem Class Definition ... 69
8.8.3.6 MPMAxiom Class Definition ... 71

8.8.4 MPMPolicyComponentStructure Subclasses: MPMPolicyClause 73
8.8.4.1 MPMAssertionClause Class Definition ... 76
8.8.4.2 MPMBooleanClause Class Definition ... 77
8.8.4.3 MPMLogicClause Class Definition ... 79

8.8.4.3.1 MPMPremiseClause Class Definition ... 80
8.8.4.3.2 MPMConclusionClause Class Definition .. 81

8.8.5 MPMPolicyComponentStructure Subclasses: MPMPolicyComponentDecorators 82
8.8.5.1 MPMPolicyComponentDecorator Class Definition .. 83
8.8.5.2 MPMPolicyTerm Hierarchy ... 85

8.8.5.2.1 MPMPolicyVariable Class Definition ... 87
8.8.5.2.2 MPMPolicyOperator Class Definition... 88
8.8.5.2.3 MPMPolicyValue Class Definition ... 89

8.8.5.3 MPMECAObject Hierarchy ... 91
8.8.5.3.1 MPMECAObject ... 92
8.8.5.3.2 MPMPolicyEvent Class Definition ... 93
8.8.5.3.3 MPMPolicyCondition Class Definition ... 96
8.8.5.3.4 MPMPolicyAction Class Definition .. 98

8.8.5.4 MPMPolicyCollection .. 102
8.9 MPMPolicySource... 106
8.10 MPMPolicyTarget ... 108

9 MPM Datatypes and Enumerations .. 111

9.1 Introduction ... 111
9.2 MPM Enumerations ... 111

9.2.1 MPMPolicyAdminStatus ... 111
9.2.2 MPMPolContinuumLevel .. 112
9.2.3 MPMPolicyDeployStatus .. 113
9.2.4 MPMPolicyDesignStatus ... 113
9.2.5 MPMPolicyExecStatus .. 114
9.2.6 MPMPolExecFailStrategy ... 115
9.2.7 MPMImpPolExecStrategy ... 116
9.2.8 MPMPolCollectionType .. 117
9.2.9 MPMPolCollectionFunction .. 118
9.2.10 MPMPolStmtConstrainMechanism ... 119
9.2.11 MPMAssertionStatementType ... 120
9.2.12 MPMPolStmtConflictStatus .. 121
9.2.13 MPMFormalLogicType ... 122
9.2.14 MPMIntentTranslationStatus ... 123
9.2.15 MPMPolCompDecConstraint .. 124
9.2.16 MPMPolCompDecWrap .. 125
9.2.17 MPMPolTargetRoleStatus ... 126
9.2.18 MPMPolOperatorType .. 126
9.2.19 MPMPolValueType ... 127

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page v

9.3 MPM Datatypes ... 129
9.3.1 MPMEncodingType ... 129

10 References .. 130

Appendix A Exemplary MPMIntentPolicy Language Description 132

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page vi

List of Figures

Figure 1. Deontic Policy Rules .. 11
Figure 2. The Same Concept Having Different Meanings for Different Users 14
Figure 3. An Example of the Policy Continuum.. 14
Figure 4. The Top Portion of the MCM Class Hierarchy .. 21
Figure 5. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail 23
Figure 6. MPM Abstractions.. 26
Figure 7. The Imperative Policy Paradigm .. 27
Figure 8. The Declarative Policy Paradigm ... 28
Figure 9. The Intent Policy Paradigm .. 30
Figure 10. The MPMPolicyStructure Class Hieararchy .. 32
Figure 11. Operations of the MPMPolicyStructure Class ... 34
Figure 12. MPMPolicyStructure Subclasses.. 46
Figure 13. The Top Portion of the MPMPolicyComponentStructure Hierarchy 53
Figure 14. The MPMPolicyStatement Class .. 55
Figure 15. Subclasses of the MPMPolicyStatement Class .. 63
Figure 16. MPMPolicyClause and its Subclasses .. 73
Figure 17. MPMPolicyComponentDecorator Subclasses.. 83
Figure 18. MPMPolicyComponentDecorator Attributes and Operations.................................... 84
Figure 19. MPMPolicyTerm Hierarchy ... 86
Figure 20. MPMECAObject Class and its Subclasses... 91
Figure 21. MPMPolicyCollection .. 103
Figure 22. PolicySource and PolicyTarget .. 106

file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772597
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772602
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772603
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772604
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772605
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772606
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772608
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772609
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772610
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772611
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772612
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772613
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772614
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772616
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772617
file://///Users/bombcar/Downloads/L77005_004_MEF_95_LB_20210408_Strassner.docx%23_Toc68772618

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page vii

List of Tables

Table 1. Contributing Member Companies ... 1
Table 2. Terminology and Abbreviations .. 8
Table 3. Numerical Prefix Conventions... 9
Table 4. Attributes of the MPMPolicyStructure Class .. 34
Table 5. Operations of the MCMPolicyStructure Class .. 43
Table 6. Attributes of the MPMImperativePolicy Class .. 46
Table 7. Operations of the MPMImperativePolicy Class .. 47
Table 8. Attributes of the MPMDeclativePolicy Class .. 50
Table 9. Operations of the MPMDeclativePolicy Class .. 51
Table 10. Attributes of the MPMIntentPolicy Class .. 52
Table 11. Operations of the MPMIntentPolicy Class .. 52
Table 12. Attributes of the MPMPolicyStatement Class ... 57
Table 13. Operations of the MPMPolicyStatement Class ... 62
Table 14. Attributes of the MPMBooleanStatement Class .. 64
Table 15. Operations of the MPMBooleanStatement Class .. 65
Table 16. Attributes of the MPMAssertionStatement Class .. 66
Table 17. Operations of the MPMAssertionStatement Class .. 67
Table 18. Attributes of the MPMEncodedStatement Class ... 68
Table 19. Operations of the MPMEncodedStatement Class .. 69
Table 20. Attributes of the MPMTheorem Class ... 70
Table 21. Operations of the MPMTheorem Class ... 71
Table 22. Attributes of the MPMAxiom Class .. 71
Table 23. Operations of the MPMAxiom Class... 72
Table 24. Attributes of the MPMPolicyClause Class .. 74
Table 25. Operations of the MPMPolicyClause Class... 75
Table 26. Attributes of the MPMAssertionClause Class ... 76
Table 27. Operations of the MPMAssertionClause Class ... 77
Table 28. Attributes of the MPMBooleanClause Class ... 78
Table 29. Operations of the MPMBooleanClause Class ... 79
Table 30. Attributes of the MPMLogicClause Class ... 79
Table 31. Operations of the MPMLogicClause Class ... 80
Table 32. Attributes of the MPMPremiseClause Class ... 80
Table 33. Operations of the MPMPremiseClause Class .. 81
Table 34. Attributes of the MPMConclusionClause Class .. 81
Table 35. Operations of the MPMConclusionClause Class... 81
Table 36. Attributes of the MPMPolicyComponentDecorator Class .. 84
Table 37. Operations of the MPMPolicyComponentDecorator Class ... 85
Table 38. Attributes of the MPMPolicyTerm Class .. 86
Table 39. Operations of the MPMPolicyTerm Class ... 87
Table 40. Attributes of the MPMPolicyVariable Class ... 87
Table 41. Operations of the MPMPolicyVariable Class .. 88
Table 42. Attributes of the MPMPolicyOperator Class ... 89
Table 43. Operations of the MPMPolicyOperator Class ... 89
Table 44. Attributes of the MPMPolicyValue Class ... 90
Table 45. Operations of the MPMPolicyValue Class .. 91

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page viii

Table 46. Attributes of the MPMECAObject Class... 92
Table 47. Operations of the MPMECAObject Class ... 93
Table 48. Attributes of the MPMPolicyEvent Class .. 94
Table 49. Operations of the MPMPolicyEvent Class .. 96
Table 50. Attributes of the MPMPolicyCondition Class ... 97
Table 51. Operations of the MPMPolicyCondition Class ... 98
Table 52. Attributes of the MPMPolicyAction Class .. 101
Table 53. Operations of the MPMPolicyAction Class... 102
Table 54. Attributes of the MPMPolicyCollection Class .. 104
Table 55. Operations of the MPMPolicyCollection Class ... 106
Table 56. Attributes of the MPMPolicySource Class .. 107
Table 57. Operations of the MPMPolicySource Class .. 108
Table 58. Attributes of the MPMPolicyTarget Class... 109
Table 59. Operations of the MPMPolicyTarget Class ... 110
Table 60. MPMPolicyAdminStatus Enumeration Definition .. 111
Table 61. MPMPolContinuumLevel Enumeration Definition... 112
Table 62. MPMPolicyDeployStatus Enumeration Definition ... 113
Table 63. MPMPolicyDesignStatus Enumeration Definition .. 114
Table 64. MPMPolicyExecStatus Enumeration Definition ... 115
Table 65. MPMPolExecFailStrategy Enumeration Definition .. 116
Table 66. MPMImpPolExecStrategy Enumeration Definition .. 117
Table 67. MPMPolCollectionType Enumeration Definition ... 118
Table 68. MPMPolCollectionFunction Enumeration Definition ... 119
Table 69. MPMPolStmtConstrainMechanism Enumeration Definition 120
Table 70. MPMAssertionStatementType Enumeration Definition ... 121
Table 71. MPMPolStmtConflictStatus Enumeration Definition ... 121
Table 72. MPMFormalLogicType Enumeration Definition .. 123
Table 73. MPMIntentTranslationStatus Enumeration Definition .. 124
Table 74. MPMPolCompDecConstraint Enumeration Definition ... 125
Table 75. MPMPolCompDecWrap Enumeration Definition ... 125
Table 76. MPMPolTargetRoleStatus Enumeration Definition .. 126
Table 77. MPMPolOperatorType Enumeration Definition ... 127
Table 78. MPMPolValueType Enumeration Definition .. 128
Table 79. AdminState Enumeration Definition ... 129

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 1

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have

requested to be included in this list.

CMC

Futurewei

PCCW Global

Verizon

Table 1. Contributing Member Companies

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 2

2 Abstract

This document specifies how Policy-based management and modeling can be used to realize and

augment the orchestration functionality defined in the MEF Lifecycle Service Orchestration (LSO)

Reference Architecture (RA), MEF 55.1 [1]. It may also be used to define other types of services,

such as choreography and collaboration.

This document defines what Policy is, how policy-based management is used in the LSO RA,

some exemplary use cases, and architectural extensions to the LSO RA. This will enable policies

to be exchanged across APIs as defined in MEF 55.1, including (but not limited to) CANTATA,

ALLEGRO, and SONATA. CANTATA and ALLEGRO enable policy-based interaction between

the Customer and the Provider, while SONATA is critical for policy-based interaction in a carrier

supply chain.

The policy model defined in this document is developed from MEF 78.1 [2] (i.e., the MEF Core

Model, or MCM). This means that the top of the policy model (i.e., MCMPolicyObject) is a

subclass of the MCM.

This document uses modeling best practices (e.g., [3][4][5]), and a number of software patterns

(e.g., [6][7][8]) to provide an extensible framework that can support model-driven engineering [9]

as well as the needs of DevOps-inspired automation. It defines concepts and functions that can be

represented to define policies, as well as associated data, exchanged at all seven of the Interface

Reference Points currently defined in [1].

The policy model defined in this document is an object-oriented information model, and hence, is

independent of any specific architectural paradigm (e.g., resource- or service-oriented

architectures), protocol, or platform.

The policy model defined in this document can be used to represent a number of different types of

policies, including (but not limited to) imperative, declarative, intent, and utility function policies.

However, the focus of this document is on imperative and intent policies.

This document normatively includes the content of the following Papyrus UML files as if they

were contained within this document from the following MEF GitHub Repositories:

https://github.com/MEF-GIT/MEF-General-Common/

MCM: (MCM.di, MCM.notation, and MCM.uml)

MEF_Types: (MEF_Types.di, MEF_Types.notation, and MEF_Types.uml)

https://github.com/MEF-GIT/MEF-General-Common/

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 3

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to

terms are found in other documents. In these cases, the third column is used to provide the

reference that is controlling, in other MEF or external documents.

Term Definition Reference

Abstract Class
An abstract class is a class that cannot be directly

instantiated. It can have abstract or concrete subclasses.
MCM ([2])

Abstraction

Abstraction is the process of focusing on the important

characteristics and behavior of a concept, and ignoring

less important characteristics and behavior.

MCM ([2])

Action

An Action defines a set of operations that may be

performed on a set of managed entities. An Action either

maintains the state, or transitions to a new state, of the

targeted managed entities. The execution of an Action

may be influenced by applicable attributes and metadata.

THIS

DOCUMENT

Capability

A set of features that are available from a Component.

These features may, but do not have to, be used.

Capabilities should be announced through a dedicated

Interface.

THIS

DOCUMENT

Class

A class is a template for defining a specific type of object

that exhibits a common set of characteristics and

behavior.

MCM ([2])

Concrete Class

A concrete class is a class that can be directly

instantiated. Once a class has been defined as concrete in

the hierarchy, all of its subclasses are required to be

concrete.

MCM ([2])

Condition

A Condition is defined as a set of attributes, features,

and/or values that are to be compared with a set of known

attributes, features, and/or values in order to determine

what decision to make.

THIS

DOCUMENT

Controlled

Language
A language that restricts the grammar and vocabulary

used.

THIS

DOCUMENT

Customer

A Customer is the organization purchasing, managing,

and/or using Connectivity Services from a Service

Provider. This may be an end-user business organization,

mobile operator, or a partner network operator.

MCM ([2])

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 4

Term Definition Reference

Customer (Role)

MCMCustomer is a concrete class, and specializes

MCMPartyRole. It represents a particular type of

MCMPartyRole that defines a set of people and/or

organizations that buy, manage, or use MCMProducts

from an MCMServiceProvider. The MCMCustomer is

financially responsible for purchasing an MCMProduct.

The MCMCustomer is the MCMPartyRole that is

purchasing, managing, and/or using Services from an

MCMServiceProvider.

MCM ([2])

Data Model

A data model is a representation of concepts of interest to

an environment in a form that is dependent on data

repository, data definition language, query language,

implementation language, and/or protocol (typically, but

not necessarily, all five).

MCM ([2])

Declarative

Policy

A type of policy that uses statements to express the goals

of the policy, but not how to accomplish those goals.

Hence, state is not explicitly manipulated, and the order of

statements that make up the policy is irrelevant.

In this document, Declarative Policy will refer to policies

that execute as theories of a formal logic (see below).

THIS

DOCUMENT

Domain

This is an abstract class, and specializes Entity. A

Domain is a collection of Entities that share a common

purpose. In addition, each constituent Entity in a Domain

is both uniquely addressable and uniquely identifiable

within that Domain.

MCM ([2])

Event

An Event is defined as anything of importance to the

management system (e.g., a change in the system being

managed and/or its environment) occurring on a time-

axis.

THIS

DOCUMENT

Federation

A federation is the result of a process that enables a group

of different systems, which may have different internal

structures, to agree upon mechanisms that provide

interoperability.

THIS

DOCUMENT

Formal Logic

The use of inference applied to the form, or content, of a

set of statements. The logic system is defined by a

grammar that can represent the content of its sentences,

so that mathematical rules may be applied to prove

whether the set of statements is true or false.

THIS

DOCUMENT

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 5

Term Definition Reference

Formal Methods

Formal Methods describe a set of mathematical theories,

such as logic, automata, graph or set theory, and provide

associated notations for describing and analyzing

systems.

THIS

DOCUMENT

Imperative Policy

A type of policy that uses statements to explicitly change

the state of a set of targeted objects. Hence, the order of

statements that make up the policy is explicitly defined.

In this document, Imperative Policy will refer to policies

that are made up of Events, Conditions, and Actions.

THIS

DOCUMENT

Information

Model

An information model is a representation of concepts of

interest to an environment in a form that is independent

of data repository, data definition language, query

language, implementation language, and protocol.

MCM ([2])

Intent Policy

A type of policy that uses statements to express the goals

of the policy, but not how to accomplish those goals. Each

statement in an Intent Policy may require the translation of

one or more of its terms to a form that another managed

functional entity can understand.

In this document, Intent Policy will refer to policies that

do not execute as theories of a formal logic. They

typically are expressed in a restricted natural language,

and require a mapping to a form understandable by other

managed functional entities.

THIS

DOCUMENT

LSO (Lifecycle

Service

Orchestration)

Open and interoperable automation of management

operations over the entire lifecycle of Layer 2 and Layer

3 Connectivity Services. This includes fulfillment,

control, performance, assurance, usage, security,

analytics and policy capabilities, over all the network

domains that require coordinated management and

control in order to deliver the service.

MEF 55.1 ([1])

LSO RA (LSO

Reference

Architecture)

A layered abstraction architecture that characterizes the

management and control domains and entities, and the

interfaces among them, to enable cooperative

orchestration of Connectivity Services. Note that in this

document, cooperative orchestration is NOT limited to

only Connectivity Services, and may include other

services as well.

MEF 55.1 ([1])

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 6

Term Definition Reference

Metadata

Metadata is a class that contains prescriptive and/or

descriptive information about the object(s) to which it is

attached. While metadata can be attached to any

information model element, this document only considers

metadata object instances attached to class instances and

relationships.

MCM ([2])

Model Element

An element of a model. For the purposes of this

document, this refers to a set of classes, attributes,

operations, constraints, and/or relationships.

MCM ([2])

Object An instance of a (concrete) class. MCM ([2])

Partner

An organization providing Products and Services to the

Service Provider (Buyer) in order to allow the Service

Provider to instantiate and manage Service Components

external to the Service Provider domain.

MCM ([2])

Partner (Role)

MCMPartner is a concrete class, and specializes

MCMPartyRole. It represents a particular type of

MCMPartyRole that provides MCMProducts and

MCMServices to the MCMServiceProvider in order to

instantiate and manage MCMService elements, such as

MCMServiceComponents, external to the Service

Provider’s Domain.

MCM ([2])

Pattern

A pattern describes a named, generic, reusable solution to

a problem that applies to a particular context. A pattern is

not a finished design, but rather, is a reusable template

that defines a set of objects, and their interactions, that

can be adapted to meet the context-specific needs

required to solve a problem.

[4][6][7][8]

Policy

Policy is a set of rules that are used to manage and

control the changing and/or maintaining of the state of

one or more managed objects.

THIS

DOCUMENT

Relationship
For the purposes of this document, a relationship can be

any type of association, aggregation, or composition.
MCM ([2])

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 7

Term Definition Reference

Role

The Role-Object pattern enables an object to adapt to the

needs of different applications and contexts by

transparently attaching and/or removing Role Objects.

Each Role Object defines a set of responsibilities that the

object has to play in that client’s context. Each context

may be its own application, which therefore gets

decoupled from other applications. The Role-Object

pattern is implemented in the MCM by aggregating Role

objects, which are defined as a type of Metadata, to other

objects (to enforce the separation of defining an object

vs. defining responsibilities that the object has to play).

MCM ([2])

Role (MCM class)

This is an abstract class, and specializes MCMMetadata.

It represents a set of characteristics and behaviors (also

referred to as responsibilities) that an object takes on in a

particular context. This enables an object to adapt to the

needs of different clients through transparently attached

role objects (as opposed to having to alter the inherent

nature of the object itself). The Role Object pattern

models context-specific views of an object as separate

role objects that are dynamically attached to and removed

from the core object to which the MCMRole objects are

attached.

MCM ([2])

Service Provider

The organization providing Ethernet Service(s). Note that

in this document, as well as in [1], the (Service Provider)

organization is NOT limited to providing only Ethernet

Services.

MCM ([2])

Service Provider

(Role)

MCMServiceProvider is a concrete class, and specializes

MCMPartyRole. It represents a particular type of

MCMPartyRole that provides MCMProducts. This

specifically includes MCMServices.

MCM ([2])

Unified Modeling

Language (UML)

The objective of UML is to provide system architects,

software engineers, and software developers with tools

for analysis, design, and implementation of software-

based systems as well as for modeling business and

similar processes.

OMG UML

2.5.1 [12]

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 8

Term Definition Reference

Whole-Part

Relationship

A whole-part relationship is one in which one set of

entities aggregates another set of entities. In such a

relationship, three objects are created (the entity doing

the aggregation, the set aggregated entities, and the

combination of the aggregating entity and its aggregated

entities).

More formally, a whole-part relationship is a partial

ordering that is reflexive, transitive, and anti-symmetric

(i.e., everything is a part of itself, any part of any part of

an entity is itself a part of that entity, and two distinct

entities cannot be part of each other).

Various; see

for example

Stanford

Encyclopedia

of Philosophy

Table 2. Terminology and Abbreviations

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 9

4 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119 [10],

RFC 8174 [11]) when, and only when, they appear in all capitals, as shown here. All key words

must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for

required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)

are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or

OPTIONAL) are labeled as [Ox] for optional.

5 Numerical Prefix Conventions

This document uses the prefix notation to indicate multiplier values as shown in Table 3.

Decimal Binary

Symbol Value Symbol Value

k 103 Ki 210

M 106 Mi 220

G 109 Gi 230

T 1012 Ti 240

P 1015 Pi 250

E 1018 Ei 260

Z 1021 Zi 270

Y 1024 Yi 280

Table 3. Numerical Prefix Conventions

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 10

6 Introduction

This specification uses UML (Unified Modeling Language) [12] to describe the salient

characteristics and behavior of imperative and intent policies, and how each can affect the behavior

of entities that are important to the managed environment. In particular, it explains what a MEF

policy is, how behavior of a managed entity is controlled using policies and defines an information

model for describing imperative and intent policies used in the MEF Lifecycle Service

Orchestration Reference Architecture.

This document is intended for developers and users that need the formalism that an information

model provides. An information model represents concepts, along with their relationships and

semantics, to help specify an extensible and structured, shareable, information repository.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 11

7 Introduction to Policy Management and Orchestration

This chapter defines what a Policy is, why it is important to Orchestration, and how it can be used

in the MEF LSO RA.

7.1 Controlling Behavior Using Policies

Management involves monitoring the activity of a system, making decisions about how the system

is acting, and performing control actions to modify the behavior of the system. The purpose of

policy is to ensure that consistent decisions are made governing the behavior of a system.

Organizations are policy-driven entities. Policy is a natural way to express rules and restrictions

on behavior, and then automate the enforcement of those rules and restrictions. However, the

number of policies can be very large (e.g., 100,000+), and the relationships between policies can

be complex. In addition, policy can change contextually. For example, different actions can be

taken based on type of connection, time of day, and network state.

This project will use the following definition of Policy:

Policy is a set of rules that is used to manage and control the changing and/or maintaining of

the state of one or more managed objects. [13]

Policy is a mechanism for controlling the behavior of an Entity. Two important types of Policies

are authorization and obligation policies. Authorization policies define what the target of a policy

is permitted or not permitted to do. Obligation policies define what the management engine must

or must not do and hence, guide the decision-making process. These two types of Policies are

based on deontic logic [14]. Their difference is shown in Figure 1.

Figure 1. Deontic Policy Rules

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 12

7.1.1 Groups of Policies and the Use of Roles

In an object-oriented approach, the external behavior of an object defines how it interacts with

other objects in its environment. However, in any real-world system, the number of objects is so

large that it is impractical to specify policies for individual objects. Instead, mechanisms should

be used to select groups of objects that have similar behaviors and/or responsibilities. One such

mechanism is called roles [4][7]. This pattern models different context-specific views of an object

as separate Role objects, which can be dynamically attached to and detached from the object that

has those roles. Policies can be associated with sets of Roles to make management easier and to

provide consistency in enforcement. Hierarchies of policies can be formed using the Composite

Pattern [8], the Decorator Pattern [6], and other more complex approaches. The use of policy

hierarchies enables a set of policies that apply to a parent Domain to propagate to each sub-domain

that is contained in the parent Domain.

7.1.2 Can Multiple Policies Apply to a Single Object?

A Policy defines how a set of objects interact. Hence, if an object interacts with multiple objects,

it can have Policies for each interaction. Note that this includes defining multiple Policies between

the same two objects. For example, a particular entity (e.g., user or application) could have

different access control permissions on different objects in the same server, or access to a particular

object may depend on context (e.g., time of day, type of connection, and/or what role the user is

logged in as).

7.1.3 Policy Subjects and Targets

Policy literature talks about policy subjects and policy targets. The subject of a policy is the entity

that is executing the policy, and the target of a policy is the set of entities that are affected by the

policy. This is important for the underlying logic used by imperative policies, as it defines the

scope of how the policy is executed. This is examined more in the following section.

7.1.4 Authorization vs. Obligation Policies

An Authorization Policy defines the set of operations that a subject is permitted to do in terms of

the operations it is authorized to perform on a target object. Permission Policies are Authorization

Policies that are positive in nature (i.e., the subject is permitted to do an operation). In contrast,

Prohibition Policies Authorization Policies that are negative in nature. Authorization Policies are

considered target-based, since the operation(s) being executed by the subject are directed to a set

of target entities. They affect the state of the target entities.

An Obligation Policy defines what the set of operations that a subject must (or must not) do. An

important underlying assumption is typically made for Obligation Policies: all subjects act in a

predictable and consistent manner, and always attempt to carry out Obligation Policies with no

freedom of choice. Obligation policies are subject-based, since the subject is responsible for

interpreting the policy and performing the set of activities specified.

Both Authorization and Obligation Policies may have constraints associated with them.

Constraints are typically expressed as a predicate based on the context that the object is operating

in, and/or the state of the object.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 13

Examples include:

• John is permitted to read file F1 (positive authorization)

• John is prohibited to read, write, or execute file F3 (negative authorization)

• John is permitted to access the Code Server only if he is on the Company Intranet (positive

authorization with constraint)

• A user’s logon is suspended if the user fails authentication three times (positive, event

triggered constraint)

• Systems whose software is less than 2.3 must not perform dynamic inventory operations

(negative obligation applying to subjects that have a particular state)

Hence, the key difference between Authorization and Obligation Policies is that the former is

target-based, whereas the latter is subject-based.

7.2 The Policy Continuum

The Policy Continuum [17] defines the concept of different layers of policies that are associated

with different sets of actors. This concept was invented because policy is only useful to users that

understand its terms and concepts. For example, business users do not work in terms of low-level

constructs, such as CLI or formal logic. Similarly, actors that use low-level constructs, such as

CLI, will likely not want to use policies defined in terms of high-level abstractions. This is

especially true of policies written in natural language, since natural language can be very

ambiguous. In contrast, intent policies were invented to enabled restricted (i.e., controlled)

languages to be used to more easily express rules in a language that is appropriate for users working

at a higher level of abstraction. This is illustrated in Figure 3. In this figure, two different actors

are working on a common concept, called a Service Level Agreement (SLA). The business user

on the left thinks of an SLA in terms of cost and revenue. Cost can be further linked to remediation

actions. In contrast, the user on the right thinks of how to implement the SLA (and what to do

when the SLA is violated). This user (e.g., a network admin) deals in terms of low-level functions

of the device. The problem is:

Two different actors from two different constituencies will have different definitions and

terminology for the same concept. This typically gives rise to two (or more) different policies

to reflect these different views. How can these different policies be properly associated?

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 14

This is illustrated conceptually in Figure 2.

Figure 2. The Same Concept Having Different Meanings for Different Users

Note that Figure 2 shows the cognitive dissonance that arises when two different actors refer to

the same term or concept (in this case, the term “SLA”), but have different meanings associated

with that term. Both formulations are, of course, valid. The key is how to translate between them.

This is the purpose of the Policy Continuum, which is shown in Figure 3.

Figure 3. An Example of the Policy Continuum

The number of continua in the Policy Continuum should be determined by the applications using

it. There is no fixed number of continua. The above figure shows five, because this enables a set

of much smaller translations of terms (e.g., from a representation without technology, to one with

technology while being device, vendor, and technology independent, to successively lower levels

that fix each of these three dimensions).

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 15

7.3 Proving the Correctness of a Policy

It is difficult to show that a system is operating correctly. Note that this is NOT the same as

showing that it can meet its requirements through testing. Dijkstra wrote: “Program testing can be

used to show the presence of bugs, but never to show their absence”.

Furthermore, other types of proofs are hard. Once again, Dijkstra wrote: “One can never guarantee

that a proof is correct, the best one can say is: ‘I have not discovered any mistakes’”.

Note that automatic proof is not possible for generic programs, due to the undecidability of the

halting problem (Turing). However, there is a branch of science called Formal Methods [15],

which describe a set of mathematical theories, such as logic, automata, graph or set theory, (i.e.,

“formal”) notations for describing and analyzing systems. The advantage of such methods is that

they can unambiguously describe the system and/or its properties. Formal analysis and verification

techniques serve to verify that a system satisfies its specification (or help in finding out why it

does not do so).

Thus, formal methods can be used to describe the system; this produces a formal specification.

Then, properties about the specification can be proven; this is called formal verification. A program

can then be derived from the (formal) specification; this is called formal synthesis. This can be

used to increase the confidence in the reliability of the system. However, this is difficult, since

most specifications are declarative and do not use precise, unambiguous language.

Modal Logics [16] are a family of formal logics that can reason about possibility and necessity.

There are different modalities that can be used; the most common are temporal, deontic (“it ought

to be the case that”), epistemic (“I know that”), and doxastic (“I believe that”). These logics are

important, because classical logic is static, and for the LSO RA, truth may vary over time. Note

that each of these can be complex. For example, temporal logic depends on how time is modeled

(For example: Is time linear? Can time branch? Is it discrete or continuous? What about instances

vs. intervals?).

Deontic logic is useful to reason about what the system does when constraints that it defines are

violated. It is widely used in many applications, such as law and security systems.

7.4 Policy Usage in the MEF LSO RA

Traditionally, policy is thought of as a set of rules. Each rule expresses a set of conditions to be

monitored and, if those conditions are met, one or more actions will be executed. This is one form

of an imperative policy. However, this definition fails to take into account the different users that

want to use policy, as well as the different forms that policy can take.

Different types of people use policy. Business people don’t want to express their policies in

networking terminology, because typically, because typically business people understand high

level technological concepts but may not be familiar with the fine details of network terminology.

Similarly, networking people don’t want policies written using business concepts for the exact

same reasons. However, both business and network personnel must work together to ensure that

network services are managed according to the business goals of the organization. This document

defines an information model that enables different types of policies to express the needs of each

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 16

constituency using the terminology and concepts of that constituency; the resulting model objects

for each constituency are then used as a consensual lingua franca. For example, the model itself

may be used to build a grammar, or set of grammars, that maps between different concepts and

terminologies. This is described in [17] as the “Policy Continuum”, and is shown in Figure 3.

The idea behind the Policy Continuum is that there are a number of different users of Policy (while

Figure 3 has identified five, there may be more or less for specific implementations). Each level

addresses a different type of user that has a different understanding of the shared entities operating

at that particular level of abstraction. For example, the business view provides a description of

business entities, such as customer, service and SLA, in business terms. The system view uses

these same entities but adds detail that is not appropriate at the business level. In addition, the

system level may introduce additional entities to support one or more business processes defined

at the business level.

The information model serves as a common language that enables concepts in each level of

the Policy Continuum to be mapped to equivalent concepts in other levels.

This is an important point. As a simple example, consider the business definition of a VPN.

Businesses view the VPN as a service to be provided to specific customers and are not necessarily

concerned about the lower-level details of how that VPN service is managed and supported. At the

system view, however, these things become important. Implementation questions, such as what

type of VPN, will be asked to add detail that is necessary to be able to build the VPN. This will

lead to more detailed views that focus on the definition of specific entities. This brings to the

forefront why we have insisted on these different levels of abstraction. A Service Provider will

happily sell a VPN service. Such a VPN service does not require the customer to be aware of

lower-level technical details, such as which interior gateway protocol (IGP) the Service Provider

is using. Therefore, there is no requirement to even mention the type of IGP that is being used at

the business level. However, there almost certainly is a need to define the type of IGP (and other

more advanced details) at lower levels of the Policy Continuum, because this affects how the

Service is implemented.

This leads to another important idea, called “policy coherency”. Since different people have

different ideas of what a policy is and what it is telling them, we need a means to be able to translate

between different levels of abstraction. In effect, we need a set of model mappings that tie the

different abstractions together. Referring to the above VPN example, we need to be able to tie the

high-level specification of the VPN to an approach (i.e., which type of VPN are we going to use)

that has a particular implementation (e.g., the particular CLI commands necessary for a particular

router to support this type of VPN). This means that the shared data must be of a form that

facilitates syntactic adaptation and/or semantic mediation between the different levels. Put another

way, the formalism that is the Policy Continuum enables policies at one level of abstraction to be

transformed to policies at another level of abstraction.

Policies are therefore not restricted to just being used at a single Reference Point associated with

a single Service Provider. In fact, policies can provide consistent and repeatable behavior across

multiple related Reference Points (e.g., the Sonata and Interlude Reference Points) of multiple

operators in a supply chain. For example:

• Customer: Always connect to an Access Point that has the least cost

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 17

• Business application: Maximize revenue

• SOF: Coordinate provisioning of VPN in specified Partner Domains

• ICM: Instantiate Gold Service Function Chaining for Gold Users

• ECM: Increase drop probability by 10% if traffic exceeds limit

In addition, the same user may need to use different types of policies. For example, consider the

transformation of the high-level policy “John gets Gold Service”. Assume that this policy takes

context into account. This means that:

• On some days, all applications for John get Gold Service

• On some days, multimedia and voice applications for John get Gold Service, but policies

are used to determine which lower class of service specific applications get if there is a

lack of resources (assuming that Gold Service is not the highest policy level)

• On some days, the system correlates current environmental conditions to past recorded

conditions and takes the action decided from the past (meaning that some applications get

Gold Service, some get Silver Service, and some may even get Bronze Service)

• The execution strategy for the decomposition of this policy is (likely) first imperative,

which is followed by a set of declarative and/or imperative policies (e.g., in the first

example, imperative policies can easily be used to set each application John is using to

Gold Service; however, in the second example, a declarative optimization function may be

used to map the applications that John wants to run onto the system’s available resources).

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 18

8 MEF Policy Model (MPM)

The MPM is a UML object-oriented information model, derived from the MCM, that contains key

model elements for representing policies of different types. This document focuses specifically on

representing imperative and declarative policies.

8.1 The Purpose of a Policy Model

One of the current problems with network management is that it is not linked to the business

processes that run the network. For example, only authorized users should be allowed to change

the configuration of a network device. Otherwise, this violates fundamental business processes,

and makes it very difficult for the overall state of the network to be tracked and updated. For every

configuration, no matter how large or how small, there are defined processes that govern how a

configuration file is built, who must approve it, when it can be scheduled for installation, and what

to do if something goes wrong. Ultimately, the business and operational policies that govern the

construction and deployment of configuration changes are more important than the

configuration changes themselves!

Process is everything. The network is not a “fat dumb pipe” that is made up of individual interfaces;

businesses don’t operate or sell interfaces! Businesses operate and manage services according to

the priority and contractual obligations that the business enters into. This mandates intelligent

processes that can manage the rich functionality of a network, and ensure that changes to network

devices follow approved processes.

8.2 How Policy is Modeled

Policy-Based Management (PBM) is defined as the usage of policy rules to manage the

configuration and behavior of one or more entities. More formally, PBM is a methodology that

describes one or more applications that manage one or more systems according to a set of rules.

These rules take the form of policies that are applied to components of the system in order to better

and more efficiently manage those components. One mechanism to do this is to use finite state

machines; in this approach, policy rules are used to control the transition from the current state to

a new state. Note that in this way, we can achieve true end-to-end control, as opposed to having

“just” device- or element-level control without PBM, since the behavior of each component is

captured by the states defined in the finite state machine.

What makes PBM different from other approaches is its use of policies to control the behavior of

managed entities. As stated previously, implicit in the definition of a PBM system is the use of a

management methodology – in the above example, a finite state machine (though clearly other

methods are also possible) – to manage the life-cycle aspects of entities.

Why does PBM use policies? The reason is to be able to control the behavior of a managed system

in a predictable and consistent fashion. In order to do this, the characteristics of the system that is

being managed must be able to be represented in as much detail as required. Then, policies can be

defined that govern each state of the managed object – from creation to deployment to destruction.

Without policies, there is no way to coordinate the behavior (e.g., the state and state transitions)

of the objects being managed. Furthermore, there is no way to guarantee consistent behavior and

reaction to events.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 19

How PBM uses policies is critical to the implementation of a PBM system. Many current PBM

systems are focused on a particular component in a system, or a set of features, that must be

controlled. For example, many Quality of Service (QoS) PBM systems are designed to control a

small subset of the features of a device, such as a router. The worry, of course, is the interaction

between the QoS features and other features of the router – what if the QoS PBM system makes

an adjustment that adversely affects the delivery of some other service or feature that the router is

supporting? The answer, of course, is for a PBM system to holistically manage the different

components in a system, and the different services that each device supports.

8.3 Naming Rules

The MPM uses the same naming rules as those used in the MCM. The MCM uses the following

rules to define the names of its model elements:

• MCM Naming rules are as follows:

 Class names MUST be in UpperCamelCase (i.e., the first letter is capitalized).

Class names MUST NOT begin with any non-alphabetic character, and no

spaces are allowed.

 Attribute names MUST be in lowerCamelCase (i.e., the first letter is lower

case); attribute names MUST NOT begin with any non-alphabetic character

except for the underscore, and no spaces are allowed. Note that attribute names

that begin with an underscore are private attributes that reference an end of an

association.

 Relationship names MUST be in UpperCamelCase (i.e., the first letter is

capitalized). Relationship names MUST NOT begin with any non-alphabetic

character, and no spaces are allowed.

• MPM naming rules are as follows:

 Each MPM class MUST be prefixed with “MPM”. The only exception is

MCMPolicyObject, which is the top of the MPM model and is a part of MCM).

This serves two purposes. First, it helps provide context to textual descriptions

of these model elements. Second, it enables MPM model elements, patterns,

and approaches to be compared to those of other SDOs and consortia

unambiguously.

 Each attribute MUST be prefixed with “mpm”. For example, the attribute

“continuumLevel” is named “mpmContinuumLevel”. If an attribute starts with

an underscore, then “mpm” immediately follows the underscore (e.g.,

mpmARef).

 Each relationship MUST be prefixed with “MPM”. For example, the

aggregation “HasPolicyTarget” is named “MPMHasPolicyTarget”.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 20

 All association classes MUST be suffixed with the word “Detail”. For example,

the association class for the above example is named

“MPMHasPolicyTargetDetail”. This makes it obvious that a class is an

association class.

• Regarding interoperability with concepts from other SDOs:

 All MCM classes that model a concept from another SDO and change the model

of that SDO (e.g., to be able to be used in the MCM) MUST be prefixed with

“MCMMEF”. For example, the concept of a Descriptor from ETSI NFV is

named “MCMMEFDescriptor”.

 All MPM classes that model a concept from another SDO and change the model

of that SDO (e.g., to be able to be used in the MCM) MUST be prefixed with

“MPMMEF”.

 All MCM classes that model a concept from another SDO exactly as it is

defined in that SDO MUST be prefixed with “MCM”, followed by the name of

the SDO, followed by the class name. For example, if an SDO named Foo

defined a class named Bar, and MCM imported this concept with no changes,

it would be named MCMFooBar.

 All MPM classes that model a concept from another SDO and change the model

of that SDO (e.g., to be able to be used in the MCM) MUST be prefixed with

“MPM”, followed by the name of the SDO, followed by the class name. For

example, if an SDO named Foo defined a class named Bar, and MPM imported

this concept with no changes, it would be named MPMFooBar.

A note about associations, aggregations, compositions, and their multiplicity. The UML guidelines

do not specify in detail what valid multiplicities are. In the MCM, multiplicities are important, in

order to provide a robust foundation for code generation, as well as to accommodate the future

incorporation of ontologies Therefore:

 Association relationships MAY have a 0..* - 0..* multiplicity. This is because

they represent a generic dependency, and one end of the association may not be

instantiated yet.

 Aggregation and composition relationships SHOULD NOT have a 0..* - 0…*

multiplicity. This is because both aggregations and compositions are a type of

whole-part relationship. Ontologically, it is impossible to talk about a “whole”

when no “parts” exist (or vice-versa).

 If there is the possibility of not instantiating an aggregation or a composition,

then the cardinality of the aggregate (or composite) part SHOULD be 0..1,

where the 0 signifies that the relationship has not yet been instantiated.

 Relationships whose owner (i.e., the source of the relationship) is a value

greater than 0 (e.g., 1 or 1..* or 3..7) SHOULD have a part multiplicity of at

least 1. This is because one side of the relationship must exist, and it makes no

sense to have one side of a relationship exist while the other side doesn’t.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 21

MPM defines a number of enumerations and datatypes for flexibility and extensibility. These are

located in the MPM project of the MEF_Types project.

 All enumerations and datatypes of MPM MUST be located in the following

MEF GIT Repository:

https://github.com/MEF-GIT/MEF-General-Common/MPM

8.4 Overview of the MCM

This section briefly describes the top-level hierarchies of the MCM. The interested reader is

referred to [2] for more details.

8.4.1 The Top Portion of the MCM

Figure 4 shows the top of the MCM class hierarchy (MCMRootEntity), the first level of inheritance

(consisting of three subclasses), and relationships with their association classes.

Figure 4. The Top Portion of the MCM Class Hierarchy

MCMRootEntity defines the top of the MCM class hierarchy. Its characteristics and behavior are

thus inherited by all MCM classes. MCMRootEntity defines a set of attributes that enable all

objects to be unambiguously named, described, and identified in a managed environment. Note

that multiple inheritance is disallowed in MEF models.

Figure 4 shows the three subclasses of MCMRootEntity: MCMEntity, MCMInformationResource,

and MCMMetaData. The limit of three subclasses simplifies the understanding of the model, and

uses classification theory to ensure that objects are organized into groups according to a set of

criteria (e.g., their similarities and/or differences).

https://github.com/MEF-GIT/

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 22

The three subclasses create three parallel class hierarchies that can interact with each other using

the three aggregations shown in Figure 4. For example, object instances from the MCMMetaData

class hierarchy are designed to be attached to object instances from the other two class hierarchies.

In addition, classes from the MCMInfoResource class hierarchy are inherently related to classes

from the MCMEntity class hierarchy.

The three class hierarchies are described as follows:

1) MCMEntity, which is the superclass for objects of interest that are important to

the managed environment, and which have a separate and distinct existence.

These objects can play one or more business functions, and can be managed or

unmanaged (using digital mechanisms). Examples include Location (unmanaged)

and Product, Service, and Resource (all three are managed).

2) MCMInformationResource, which is information that is required to describe

concepts owned by other Entities, but which is not an inherent part of the Entity

being described. For example, an IPAddress is an important piece of data, but it

does not control its own lifecycle; rather, its lifecycle is controlled by another

Resource (e.g., a DHCPServer). The use of MCMInformationResource enables

the IPAddress (in this example) to be represented and associated with the correct

Resource responsible for its lifecycle.

3) MCMMetaData, which is an object that defines descriptive and/or prescriptive

information about the MCMEntity or MCMInformationResource objects that it is

attached to. Examples include versioning information of an object, as well as best

common practice information and context-specific usage guidelines.

Figure 4 also shows three aggregations, called MCMEntityHasMCMInfoResource,

MCMEntityHasMCMMetaData, and MCMInfoResourceHasMCMMetaData.

The first aggregation defines the set of MCMInformationResource objects that are associated with

a given set of MCMEntities. The second and third aggregations define the set of MCMMetaData

objects that can be attached to a particular MCMEntity and a given MCMInformationResource,

respectively. All three of these aggregations are implemented as association classes; this enables

the Policy Pattern (see Figure 5) to be used to define policy rules that constrain which part objects

(i.e., MCMInformationResource for the first aggregation, and MCMMetaData for the second and

third) are attached to which MCMEntity (first or second aggregation) or

MCMInformationResource (third aggregation). Note that MPMPolicyStructure is an abstract class

that is the superclass of imperative, declarative, and intent policy rules.

All MCM association classes are rooted from a single superclass, called MCMRelationshipParent

(which in turn is subclasses from MCMEntity); this simplifies both the design of the association

classes and their implementation. The MCMPolicyStructure, which is a subclass of

MCMPolicyObject, is the superclass of all policies defined in the MEF Policy Driven

Orchestration project (i.e., imperative, declarative, and intent policies). The diagram below shows

that an object instance of the appropriate concrete subclass of MCMPolicyStructure is related to

class-level attributes and operations of an object instance of the

MCMEntityHasMCMMetaDataDetail association class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 23

Figure 5. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail

8.4.2 The Use of Metadata

The purpose of MCMMetaData is to describe and/or prescribe information about MCMEntity and

MCMInformationResource objects. Examples include describing best current practices of using

an object, instructing which version(s) of an object to use for a given situation, and to define how

to manage the behavior of the system and its constituent components. This makes MCMMetaData

objects different than both MCMEntities (whose purpose is to describe the constituent components

of a managed system) as well as MCMInformationResource (whose purpose is to describe

information that is not an inherent part of a managed entity, but which nevertheless is important

information for the system being managed and is governed by an MCMEntity).

More formally, in the MCM, metadata may describe and/or prescribe information about the

object(s) to which it is attached. This is done by “attaching” the metadata object to another object

using a relationship, which is typically an aggregation (i.e., a type of “whole-part” relationship).

This can be thought of as augmenting the description of that object, and/or attaching management

and control information, to that object. Multiple metadata objects may be attached to any single

object.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 24

There is often debate as to whether something is metadata or not. In the MCM, a very simple rule

is used to make this decision:

 Metadata SHOULD be used to describe a concept that is not part of the

inherent characteristics or behavior of an object.

For example, suppose we were designing a class to represent a Person. An attribute called birthdate

would be reasonable, since it is a characteristic of all People. In contrast, an attribute called

hairColor is not, since a Person may not have any hair; this could instead be conveyed using

metadata. Finally, an attribute called socialSecurityNumber is a poor design for a number of

reasons, including (1) social security numbers are typically used only in the US, and (2) there are

a number of complex geo-political reasons involving whether a person living in the US even has

a social security number.

A much better design is to realize that a social security number is one way to identify a person in

a given context. Hence, a more scalable approach would be to define an association between

Person and another class, called (for example) PersonalIdentifier. Note that this enables different

types of identifiers (e.g., driverLicense, nameAndPassword, biometricData) to be defined a

subclasses of PersonalIdentifier. Since each of these have different metadata (e.g., when they

should be used), metadata could be attached to each type of identifier.

Metadata is crucial to designing and implementing model-driven software. Most information

models either do not specify a metadata hierarchy, or define metadata as embedded within a class.

The MCM has chosen to define a separate metadata hierarchy, because:

1) Metadata that is defined within a class makes that metadata available only to that

class; hence, if the same concept (e.g., versioning, or periods of time within which

something is applicable) pertains to other classes, the metadata is captured as

duplicate model elements (e.g., classes, attributes, operations, constraints, and/or

relationships). This creates maintenance issues, as each metadata model object

needs to be separately managed.

2) Creating a metadata hierarchy enables a family of objects to be reused to

represent common information and behavior that apply to other objects. For

example, if the concept of a software version is needed, then defining version as

metadata enables any object in the entire model to use a consistent definition of

software version.

 Metadata SHOULD be optional, since it is used to describe or prescribe the

behavior and semantics of another object.

In the MCM, a separate class hierarchy supports attaching a set of metadata objects that can be

optionally attached to other objects as needed (e.g., depending on context).

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 25

8.4.3 MCM Compliance

The MCM defines all common concepts that other models can use.

 In principle, users of a model SHOULD be able to find the basic definitions of

all concepts that their project needs defined in the MCM.

 If a required concept is not defined in the MCM, then that concept SHOULD

be added to either the MCM (if it is generally applicable to other models), or to

a model derived from the MCM; this enables the MCM, and its derived models,

to continually grow and serve the common needs of the MEF modeling

community.

 New concepts that are added to the MCM SHOULD be in the form of a small

number of key model elements. Entire models SHOULD NOT be imported

into the MCM, as they will likely not be generally applicable to other projects.

For example, if Policy was not defined in the MCM, and a project needed to use Policy, then that

project should request that Policy be added to the MCM. This does not mean that the entire Policy

model is added to the MCM; rather, a small set of model elements are added to the MCM hierarchy

so that a common Policy model can be built. This is how Policy is currently defined in the MCM.

Note that most projects will need to reference multiple model elements. For example, the Sonata

Ordering project will need to use classes, attributes, and relationships from at least the

MCMUnManagedEntity hierarchy (e.g., locations and physical entities), MCMManagedEntity

hierarchy (e.g., Product, and possible Service, as well as their associated Definitions), MCMParty

hierarchy (e.g., people and organizations), MCMBusinessObject hierarchy (e.g., orders and order

items), and MCMMetaData hierarchy.

 If a project needs to add model elements (e.g., classes, attributes, relationships,

operations, constraints) to the MCM, it SHOULD conform to the principles in

this section.

The following sections define MCM model elements. Classes are not individually designated as

mandatory or optional, because the set of classes that are implemented depends on the application

being realized.

 If a class is implemented, then any mandatory model elements defined by that

class MUST also be implemented.

 Requirement [R13] means that any inherited model elements defined by a class

MUST also be implemented. In particular, overriding attributes or operations

MUST NOT be done.

Care should be taken in defining relationships. Relationships are inherited by the classes

participating in a relationship.

 Subclasses that inherit relationships from their parent classes SHOULD NOT

define a relationship that has the same behavior as inherited relationships.

While this also applies to attributes and operations, it is much more common in

practice to see this requirement not followed.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 26

8.5 Design Approach of the MPM

The MPM contains model elements that treat a policy as an intelligent container that aggregates

one or more components. This is shown in Figure 6 below.

MCMPolicyObject, defined in the MCM, is the root of the MPM information model. Since

MCMPolicyObject is a type of MCMManagedEntity, this means that:

• All MPM classes are also managed entities

• All MPM classes can potentially be related to metadata and information resources

The MPM is made up of four types of objects. Two of them, MPMPolicyStructure and

MPMPolicyComponentStructure, define hierarchies for representing policies and components of

a policy, respectively. MPMPolicySource represents a set of objects that authored the policy, and

MPMPolicyTarget represents a set of objects that may be affected by a policy.

8.5.1 PolicyContainer

A PolicyContainer is a collection of statements, policy components, and metadata that define the

overall structure of the policy. A PolicyContainer defines whether the Policy is an Imperative,

Declarative, or Intent Policy. That in turn determines what types of PolicyComponents the

PolicyContainer is made up of.

The PolicyContainer defines the type of policy rule; the contents of the policy rule are defined by

one or more MPMPolicyStatements. This is reflected in the multiplicity of the

MPMPolicyHasMPMPolicyStatement aggregation.

 All MPMPolicy objects MUST contain at least one MPMPolicyStatement.

Figure 6. MPM Abstractions

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 27

8.5.2 Types of Policies

There are three main types of policy paradigms that are used in the PDO: imperative,

declarative, and intent policies. While other types of policies are certainly possible (e.g., utility

functions), the use of these three policies paradigms provides sufficient flexibility to address the

currently identified needs of the PDO project.

8.5.2.1 Imperative Policies

Imperative policies follow the imperative programming paradigm, which focuses on describing

how a program operates. In this paradigm, policies are structured such that they explicitly control

the transitioning of one state to another state. In this approach, only one target state is allowed to

be chosen. This is done by defining the order in which operations occur, using programming

constructs that explicitly control that order. Another important characteristic of imperative

policies is that they allow side effects. Figure 7 shows the behavior of an imperative policy.

A commonly accepted and generic form of imperative policies is the ECA (Event-Condition-

Action) Policy. In this paradigm:

o Event: An Event is any important occurrence in time of a change in the system being

managed, and/or in the environment of the system being managed. Event include time

and user actions (e.g., logon, logoff, and actions that violate an ACL).

o Condition: A condition is defined as a set of attributes, features, and/or values that are to

be compared with a set of known attributes, features, and/or values in order to determine

whether or not the set of Actions in that (imperative) Policy Rule can be executed or not.

Examples of Conditions include matching attributes of a packet or flow, determining if

sufficient resources exist for running a Service, and checking the contextual values

associated with the current state with those in past states.

o Action: An action is used to control and monitor the behavior of the system or component

that a Policy Rule is applied to when the event and condition clauses are satisfied. The

order of action execution, as well as how failures are treated, are determined by metadata.

Examples of Actions include providing intrusion detection and/or protection, changing

Figure 7. The Imperative Policy Paradigm

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 28

ACLs to grant or deny access privileges, and redirecting traffic to a backup circuit (e.g.,

in the case of congestion).

Each of the above three clauses are Boolean clauses. A Boolean clause is a logical statement that

evaluates to either TRUE or FALSE. It may be made up of one or more terms; if more than one

term, then the terms are connected using logical connectives (i.e., AND, OR, and NOT).

8.5.2.2 Declarative Policies

The purpose of declarative programming is to describe the set of computations that need to be

done without describing how to execute those computations. In particular, the control flow of the

program is not specified. Hence, a key characteristic of declarative programming is that the order

of statement execution is not defined. In so doing, side effects are reduced.

Declarative programming is defined as a program that executes according to a theory defined in a

formal logic. That is, declarative policies are written in a formal logic language, such as First Order

Logic. This is contrasted with intent policies (see Section 8.5.2.3), which are written in a

(controlled) natural language and then translated to a different form. Figure 8 shows the behavior

of a declarative policy.

In declarative policies, there isn’t really the notion of an action; Figure 8 is used to keep the

symbology constant to facilitate comparison between imperative, declarative, and intent policies.

Rather, in declarative and intent policies, the current state S represents the goals of the policy, and

the possible states represent solutions that realize those goals in different ways.

The following is an example of a declarative policy from OpenStack Congress. Note that

declarative policies are expressed as logical predicates.

Define the following policy:

Every network attached to a VM must be a public network or a private network owned

by someone in the same group as the VM owner.

This is expressed in a formal logic as follows:

Figure 8. The Declarative Policy Paradigm

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 29

// define prohibited states

error(vm) :-

// find all VMs in a network

nova:virtual_machine(vm),

nova:network(vm, network),

// see if this is a public network

not neutron:public_network(network),

// is the owner of the network in the same group as the owner of the VM

neutron:owner(network, netowner),

nova:owner(vm, vmowner),

not same_group(netowner, vmowner)

// which users are members of the same group

same_group(user1, user2) :-

ldap:group(user1, group),

ldap:group(user2, group)

In the above, Nova is a manager for VMs, Neutron is a manager for virtual networks, and LDAP

directory services is used to manage group-membership.

Declarative policies can be used in three different ways:

1) Monitoring: check if all deployed VMs obey this policy

2) Preventative: determine if this policy is satisfied before Nova deploys a VM

3) Corrective: when LDAP group membership changes, correct violations

8.5.2.3 Intent Policies

An intent policy is a type of declarative policy that uses statements to express the goals of the

policy, but not how to accomplish those goals. Each statement in an Intent Policy may require the

translation of one or more of its terms to a form that another managed functional entity can

understand.

In this document, Intent Policy will refer to policies that do not execute as theories of a formal

logic. They typically are expressed in a restricted natural language and require a mapping to a form

understandable by other managed functional entities. This is shown in Figure 9.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 30

The advantage of Intent is its ability to express policies using concepts and terminology that are

familiar to the Consumer (e.g., Buyer or requestor of a service). This is, of course, its disadvantage,

since natural languages are typically ambiguous. In the PDO project, we use the information model

as a data dictionary (e.g., a central source of truth), so that the model can be used to help satisfy

the needs of the translation in a common way.

An example of an intent policy that uses mapping in several different ways is the following:

Provide John Gold Service

The mapping component needs to translate the above statement to a form that other components

can understand. In this example:

o Provide is mapped to an assignment

o John is recognized as a Customer

o GoldService is recognized as a type of SLA

Hence, a mapping of the above intent policy may look like:

John is assigned GoldService

where:

o The Customer (John) is an instance of the Person class (a subclass of Party) and is then

assigned the Customer PartyRole (since a Party aggregates 0..n PartyRoles)

o John is mapped to a concrete representation (e.g., an IP address range)

o The GoldService SLA is used to identify the types of applications that John may use

o Each application runs under GoldService

o The combination of the SLA and application can be used to determine the

requirements of each application on the infrastructure

o The SLA may itself be mapped to related concepts, such as incentives and violations

Figure 9. The Intent Policy Paradigm

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 31

The above mappings utilize concepts in the information model, along with information from other

management entities (e.g., an LDAP directory that provides an authorized Customer list).

Note that in intent policies, technical terms are avoided. The above example only uses concepts

that are visible to the business user, such as the name of a Customer and the desired class of service

(as advertised by the Service Provider).

In particular, the example of the declarative OpenStack Congress policy does not fit our definition

of intent (even though that policy is, in fact, declarative). This is because it uses a number of

technical terms, such as “network” and “VM”. To be an intent policy, it would have to be

reworded, such as:

 Only allow public communication using either the Internet or a known Service Provider

The mapping logic would then translate “public communication” to a public network, and “known

Service Provider” to a private network known to the owner of this VM.

Note that the OpenStack Congress could be a translation from an intent policy to a policy at a

lower level of abstraction.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 32

8.6 MCMPolicyObject

This is an abstract class, and specializes MCMManagedEntity. It is the root of the MEF Policy

Model (MPM). In other words, all other classes of the MPM are subclasses of this class. This

simplifies code generation and reusability. It also enables different types of MCMMetadata objects

to be attached to any appropriate subclass of MCMPolicyObject.

No attributes or relationships are currently defined for this class.

8.7 The MPMPolicyStructure Hierarchy

The structure of this class hierarchy is shown in Figure 10. This class hierarchy is defined to

facilitate adding new types of policies later.

An MPMPolicy may take the form of an individual policy or a set of compound (i.e. embedded)

policies. However, some types of MPMPolicies only make sense as individual policies. This

requirement is supported by applying the composite pattern to subclasses of the

MPMPolicyStructure class that can support compound policies. For example, imperative policies

can support embedded policies (e.g., as nested if-then statements), while declarative and intent

policies cannot.

Figure 10. The MPMPolicyStructure Class Hieararchy

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 33

8.7.1 MPMPolicyStructure Class Definition

This is a mandatory abstract class. It defines the structure of an MPMPolicy. In this model, the

type of Policy (e.g., imperative, declarative, intent) is represented by a subclass of the

MPMPolicyStructure class, which is a type of PolicyContainer. The type of PolicyContainer then

defines the set of MPMPolicyComponentStructure objects that it may contain.

This release will define imperative, declarative, and intent policies.

Table 4 defines the attributes of the MPMPolicyStructure class.

Attribute Name Description

mpmPolAdminStatus :

MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative integer

attribute that defines the current administrative status of this

particular MPMPolicy object. The allowable values of this

enumeration are defined by the MPMPolicyAdminStatus

enumeration.

mpmPolContinuumLevel:

MPMPolContinuumLevel[0..1]

This is an optional enumerated non-negative integer

attribute. It defines the level of abstraction, as represented

by the Policy Continuum Level, of this particular

MPMPolicy. The allowable values of this enumeration are

defined by the MPMPolContinuumLevel enumeration.

mpmPolDeployStatus :

MPMPolicy-DeployStatus[0..1]

This is an optional enumerated, non-negative integer

attribute. It is used to indicate whether this MPMPolicy can

or cannot be deployed by the policy management system.

This attribute enables the policy manager to know which

MPMPolicies are currently deployed, and may be useful for

the policy execution system for planning the staging of

MPMPolicies. The allowable values of this enumeration are

defined by the MPMPolicyDeployStatus enumeration.

mpmPolDesignStatus :

MPMPolicy-DesignStatus[0..1]

This is an optional enumerated, non-negative integer whose

value defines the current design status of this MPMPolicy

object. The allowed set of values are defined in the

MPMPolicyDesignStatus enumeration.

mpmPolExecFailStrategy:

MPM-

PolExecFailStra-

tegy[0..1]

This is an optional enumerated, non-negative integer

attribute. It is used to define what actions, if any, should be

taken by this particular MPMPolicy if it fails to execute

correctly.

Note that some systems may not be able to support all

options specified in this enumeration. For example, if

rollback is NOT supported by the system, then options 2

and 3 may be skipped, and options 4 and 5 be used in their

place. The allowable values of this enumeration are defined

by the MPMPolExecFailStrategy enumeration.

mpmPolExecStatus:

MPMPolicyExecStatus[0..1]

This is an optional enumerated non-negative enumerated

integer whose value defines the current execution status of

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 34

this MPMPolicy object. The allowed set of values are

defined in the MPMPolicyExecStatus enumeration.

Table 4. Attributes of the MPMPolicyStructure Class

Figure 11 shows the operations for this class, and Table 5 defines the operations for this class.

Figure 11. Operations of the MPMPolicyStructure Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 35

Operation Name Description

getMPMPolAdminStatus() :

MPMPolicyAdminStatus[1..1]

This operation returns the current

administrative status of this particular

MPMPolicy object, which is defined by the

MPMPolicyAdminStatus enumeration. This

operation takes no input parameters.

 If the mpmPolAdminStatus attribute

does not have a value, then this

operation MUST return an error.

setMPMPolAdminStatus(in inputStatus :

MPMPolicyAdminStatus[1..1])

This operation sets the value of the current

administrative status of this particular

MPMPolicy object. This operation takes a

single input parameter, called inputStatus,

which defines the new value for the

mpmPolAdminStatus attribute. The allowable

values of this input parameter are defined by

the MPMPolicyAdminStatus enumeration.

getMPMPolContinuumLevel() :

MPMPolContinuumLevel[1..1]

This operation returns the level of abstraction,

as represented by the Policy Continuum Level,

of this particular MPMPolicy. The return

value of this operation is defined by the

MPMPolContinuumLevel enumeration. This

operation takes no input parameters.

 If the mpmPolContinuumLevel

attribute does not have a value, then

this operation SHOULD return a

NULL string.

setMPMPolContinuumLevel(in

polContinuumLevel :

MPMPolContinuumLevel[1..1])

This operation sets the level of abstraction, as

represented by the Policy Continuum Level, of

this particular MPMPolicy. This operation

takes a single input parameter, called

polContinuumLevel, which defines the new

value for the mpmPolContinuumLevel

attribute. The

allowable values of this input parameter are

defined by the MPMPolContinuumLevel

enumeration.

getMPMPolDeployStatus() :

MPMPolicyDeployStatus[1..1]

This operation returns the current deployment

status of this particular MPMPolicy, which is

defined by the MPMPolicyDeployStatus

enumeration. This operation takes no input

parameters.

 If the mpmPolDeployStatus attribute

does not have a value, then this

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 36

operation SHOULD return a NULL

string.

setMPMPolDeployStatus(in

polDeployStatus :

MPMPolicyDeployStatus[1..1])

This operation sets the current deployment

status of this particular MPMPolicy. This

operation takes a single input parameter,

called polDeployStatus, which defines the new

value for mpmPolDeployStatus attribute. The

allowable values of this input parameter are

defined by the MPMPolicyDeployStatus

enumeration.

getMPMPolDesignStatus() :

MPMPolicyDesignStatus[1..1]

This operation returns the current design status

of this particular MPMPolicy object, which is

defined by the MPMPolicyDesignStatus

enumeration. This operation takes no input

parameters.

 If the mpmPolDesignStatus attribute

does not have a value, then this

operation MUST return an error.

setMPMPolDesignStatus(in

polDesignStatus :

MPMPolicyDesignStatus[1..1])

This operation sets the value of the current

design status of this particular MPMPolicy

object. This operation takes a single input

parameter, called polDesignStatus, which

defines the new value for the

mpmPolDesignStatus attribute. The allowable

values of this input parameter are defined by

the MPMPolicyDesignStatus enumeration.

getMPMPolExecFailStrategy() :

MPMPolExecFailStrategy[1..1]

This operation returns the current strategy for

dealing with execution failures. This defines

what actions, if any, should be taken by this

particular MPMPolicy if it fails to execute

correctly. The return value of this operation is

defined by the MPMPolExecFailStrategy

enumeration. This operation takes no input

parameters.

 If the mpmPolExecFailStrategy

attribute does not have a value, then

this operation SHOULD return a

NULL string.

setMPMPolExecFailStrategy(in

polExecFailStrategy :

MPMPolExecFailStrategy[1..1])

This operation sets the current strategy for

dealing with execution failures. This defines

what actions, if any, should be taken by this

particular MPMPolicy if it fails to execute

correctly. The allowable values of this

enumeration are defined by the

MPMPolExecFailStrategy enumeration.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 37

getMPMPolExecStatus() :

MPMPolicyExecStatus[1..1]

This operation returns the current execution

status of this MPMPolicy object. The return

value of this operation is defined by the

MPMPolicyExecStatus enumeration. This

operation takes no input parameters.

 If the mpmPolExecStatus attribute

does not have a value, then this

operation SHOULD return a NULL

string.

setMPMPolExecStatus(in

polExecStatus :

MPMPolicyExecStatus[1..1])

This operation sets the current execution status

of this MPMPolicy object. The allowed set of

values are defined in the

MPMPolicyExecStatus enumeration.

getMPMPolSourceObjectList() :

MPMPolicySource[1..*]

This operation retrieves the set of

MPMPolicySource objects that are contained

in this particular MPMPolicyStructure object.

This is obtained by following the

MPMPolicyHasMPMPolicySource

aggregation.

Each instance of this aggregation defines an

MPMPolicySource object, which is then

added to the return value of this operation.

The return value of this operation is an array

of one or more MPMPolicySource objects.

This operation takes no input parameters.

 If this MPMPolicyStructure object

does not instantiate this aggregation,

then this operation SHOULD return a

NULL MPMPolicySource object.

setMPMPolSourceObjectList(in

polSourceObjectList :

MPMPolicySource[1..*])

This operation defines a new set of

MPMPolicySource objects that will be

contained in this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polSourceObjectList, which defines a set of

one or more MPMPolicySource objects. If this

MPMPolicyStructure object already has a set

of one or more MPMPolicySource objects that

it contains, then those MPMPolicySource

objects will be deleted by first, deleting the

accompanying association class, and second,

deleting the corresponding association. Then,

a new association (an instance of

MPMPolicyHaMPMPolicySource) is created

for each MPMPolicySource object in the

polSourceObjectList parameter.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 38

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

setMPMPolSourceObjectPartialList (in

polSourceObjectList :

MPMPolicySource[1..*])

This operation defines a new set of

MPMPolicySource objects that will be

contained in this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polSourceObjectList, which defines a set of

one or more MPMPolicySource objects. If this

MPMPolicyStructure object already has a set

of one or more MPMPolicySource objects that

it contains, then those MPMPolicySource

objects are ignored. Then, a new association

(an instance of

MPMPolicyHaMPMPolicySource) is created

for each MPMPolicySource object in the

polSourceObjectList.

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

 Any association between this

MPMPolicyStructure object and other

MPMPolicySource objects that is not

specified in the polSourceObjectList

MUST NOT be affected.

delMPMPolSourceObjectList()

This operation removes all instances of the

MPMPolicyHasMPMPolicySource

aggregation, and its association classes, that

enables this particular MPMPolicyStructure

object to contain any MPMPolicySource

objects. This operation does NOT affect either

the MPMPolicySource object or the

MPMPolicyStructure object; it just deletes the

association between this MPMPolicyStructure

object and this MPMPolicySource object. This

operation has no input parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 39

delMPMPolSourceObjectPartialList(in

polSourceObjectList :

MPMPolicySource[1..*])

This operation removes the association, and its

association class, for each MPMPolicySource

object in the polSourceObjectList that is

contained by this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polSourceObjectList, that defines the set of

MPMPolicySource objects that will be

unlinked from this particular

MPMPolicyStructure object. This operation

does NOT affect either the

MPMPolicyStructure object or the

MPMPolicySource object; it just deletes the

association between this MPMPolicyStructure

object and this MPMPolicySource object.

 Any association between this

MPMPolicyStructure object and other

MPMPolicySource objects that is not

specified in the polSourceObjectList

MUST NOT be affected.

getMPMPolTargetObjectList() :

MPMPolicyTarget[1..*]

This operation retrieves the set of

MPMPolicyTarget objects that are contained

in this particular MPMPolicyStructure object.

This is obtained by following the

MPMPolicyHasMPMPolicyTarget

aggregation.

Each instance of this aggregation defines an

MPMPolicyTarget object, which is then added

to the return value of this operation. The

return value of this operation is an array of

one or more MPMPolicyTarget objects. This

operation takes no input parameters.

 If this MPMPolicyStructure object

does not instantiate this aggregation,

then this operation SHOULD return a

NULL MPMPolicyTarget object.

setMPMPolTargetObjectList(in

polTargetObjectList :

MPMPolicyTarget[1..*])

This operation defines a new set of

MPMPolicyTarget objects that will be

contained by this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polTargetObjectList, which defines a set of

one or more MPMPolicyTarget objects. If this

MPMPolicyStructure object already has a set

of one or more MPMPolicyTarget objects that

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 40

it refers to, then those MPMPolicyTarget

objects will be deleted by first, deleting the

accompanying association class, and second,

deleting the corresponding association. Then,

a new association (an instance of

MPMPolicyHasMPMPolicyTarget) is created

for each MPMPolicyTarget object in the

polTargetObjectList parameter.

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

setMPMPolTargetObjectPartialList (in

polTargetObjectList :

MPMPolicyTarget[1..*])

This operation defines a new set of

MPMPolicyTarget objects that will be

contained by this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polTargetObjectList, which defines a set of

one or more MPMPolicyTarget objects. If this

MPMPolicy-Structure object already has a set

of one or more MPMPolicyTarget objects that

it contains, then those MPMPolicyTarget

objects are ignored. Then, a new association

(an instance of

MPMPolicyHaMPMPolicyTarget) is created

for each MPMPolicyTarget object in the

polTargetObjectList.

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

 Any association between this

MPMPolicyStructure object and other

MPMPolicyTarget objects that is not

specified in the polTargetObjectList

MUST NOT be affected.

delMPMPolTargetObjectList()

This operation removes all instances of the

MPMPolicyHasMPMPolicyTarget

aggregation, and its association classes, that

enables this particular MPMPolicyStructure

object to refer to any MPMPolicyTarget

objects. This operation does NOT affect either

the MPMPolicyTarget object or the

MPMPolicyStructure object; it just deletes the

association between this MPMPolicyStructure

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 41

object and this MPMPolicyTarget object. This

operation has no input parameters.

delMPMPolTargetObjectPartialList(in

polTargetObjectList :

MPMPolicyTarget[1..*])

This operation removes the association, and its

association class, for each MPMPolicyTarget

object in the polSourceObjectList that is

associated with this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polTargetObjectList, that defines the set of

MPMPolicyTarget objects that will be

unlinked from this particular

MPMPolicyStructure object. This operation

does NOT affect either the

MPMPolicyStructure object or the

MPMPolicyTarget object; it just deletes the

association between this MPMPolicyStructure

object and this MPMPolicyTarget object.

 Any association between this

MPMPolicyStructure object and other

MPMPolicyTarget objects that is not

specified in the polTargetObjectList

MUST NOT be affected.

getMPMPolStatementList() :

MPMPolicyStatement[1..*]

This operation retrieves the set of

MPMPolicyStatement objects that are

contained in this particular

MPMPolicyStructure object. This is obtained

by following the

MPMPolicyHasMPMPolicyStatement

aggregation.

Each instance of this aggregation defines an

MPMPolicyStatement object, which is then

added to the return value of this operation.

The return value of this operation is an array

of one or more MPMPolicyStatement objects.

This operation takes no input parameters.

 If this MPMPolicyStructure object

does not instantiate this aggregation,

then this operation SHOULD return a

NULL MPMPolicyStatement object.

setMPMPolStatementList (in

polStatementObjectList :

MPMPolicyStatement[1..*])

This operation defines a new set of

MPMPolicyStatement objects that are

contained by this particular

MPMPolicyStructure object. This operation

takes a single input parameter, called

polStatementObjectList, which defines a set of

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 42

one or more MPMPolicyStatement objects. If

this MPMPolicyStructure object already has a

set of one or more MPMPolicyStatement

objects that it refers to, then those

MPMPolicyStatement objects will be deleted

by first, deleting the accompanying

association class, and second, deleting the

corresponding association. Then, a new

association (an instance of

MPMPolicyHaMPMPolicyStatement) is

created for each MPMPolicyStatement object

in the polStatementObjectList parameter.

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

setMPMPolStatementPartialList(in

polStatementObjectList:

MPMPolicyStatement[1..*])

This operation defines a new set of

MPMPolicyStatement objects that refer to this

particular MPMPolicyStructure object. This

operation takes a single input parameter,

called polStatementObjectList, which defines

a set of one or more MPMPolicyStatement

objects. If this MPMPolicyStructure object

already has a set of one or more

MPMPolicyStatement objects that it refers to,

then those MPMPolicyStatement objects are

ignored. Then, a new association (an instance

of MPMPolicyHaMPMPolicyStatement) is

created for each MPMPolicyStatement object

in the polStatementObjectList.

 Every association created SHOULD

have a new association class created to

realize the semantics of that

association.

delMPMPolStatementObjectList()

This operation removes all instances of the

MPMPolicyHaMPMPolicyStatement

aggregation, and its association classes, that

enables this particular MPMPolicyStructure

object to refer to any MPMPolicyStatement

objects. This operation does NOT affect either

the MPMPolicyStatement object or the

MPMPolicyStructure object; it just deletes the

association between this MPMPolicyStructure

object and this MPMPolicyStatement object.

This operation has no input parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 43

delMPMPolStatementObjectPartialList(in

polStatementObjectList:

MPMPolicyStatement[1..*])

This operation removes the association, and its

association class, for each

MPMPolicyStatement object in the

polStatementObjectList that is associated with

this particular MPMPolicyStructure object.

This operation takes a single input parameter,

called polStatementObjectList, that defines the

set of MPMPolicyStatement objects that will

be unlinked from this particular

MPMPolicyStructure object. This operation

does NOT affect either the

MPMPolicyStructure object or the

MPMPolicyStatement object; it just deletes

the association between this

MPMPolicyStructure object and this

MPMPolicyStatement object.

 Any association between this

MPMPolicyStructure object and other

MPMPolicyStatement objects that is

not specified in the

polStatementObjectList MUST NOT

be affected.

Table 5. Operations of the MCMPolicyStructure Class

8.7.2 MPMPolicyStructure Relationships

The MPMPolicyStructure class defines three aggregation relationships, as shown in Figure 10.

8.7.2.1 The MPMPolicyHasMPMPolicySource Aggregation

The MPMPolicyHasMPMPolicySource aggregation is an optional aggregation, and defines the set

of MPMPolicySource objects that are attached to this particular MPMPolicyStructure object. The

semantics of this aggregation are defined by the MPMHasPolicySourceDetail association class.

MPMPolicySource objects are used for authorization policies, as well as to enforce deontic and

alethic logic.

The multiplicity of this aggregation is 0..1 - 0..n. This means that it is an optional aggregation (i.e.,

the “0” part of the 0..1 cardinality). If this aggregation is instantiated (i.e., the “1” part of the 0..1

cardinality), then zero or more MCMPolicySource objects can wrap this particular

MCMPolicyStructure object. The 0..* cardinality enables an MCMPolicyStructure object to be

defined without having to define an associated MCMPolicySource object for it to aggregate. The

semantics of this aggregation are defined by the MPMHasPolicySourceDetail association class.

This enables the management system to control which set of concrete subclasses of

MCMPolicyStructure can aggregate which types of MPMPolicySource objects.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 44

 An MPMPolicyStructure object, or any of its subclasses, MAY aggregate zero

or more MPMPolicySource objects.

The MPMHasPolicySourceDetail is a concrete association class, and defines the semantics of the

MPMHasPolicySource aggregation. The attributes and relationships of this class can be used to

define which MPMPolicySource objects can be attached to which particular set of

MPMPolicyStructure objects. These semantics can be further enhanced by using the Policy Pattern

to define policy rules that constrain which part objects (i.e., MPMPolicySource) are attached to

which object. Note that MCMPolicyStructure is an abstract class that is the superclass of

imperative, declarative, and intent policy rules.

8.7.2.2 The MPMPolicyHasMPMPolicyTarget Aggregation

The MPMPolicyHasMPMPolicyTarget aggregation is a mandatory aggregation, and defines the

set of MPMPolicyTarget objects that are attached to this particular MPMPolicyStructure object.

The semantics of this aggregation are defined by the MPMHasPolicyTargetDetail association

class.

MPMPolicyTarget objects are MCMManagedEntity objects whose state and/or behavior will be

affected by the execution of a set of MPMPolicy objects.

The multiplicity of this aggregation is 0..1 - 1..n. This means that this aggregation is optional (i.e.,

the “0” part of the 0..1 cardinality). If this aggregation is instantiated (i.e., the “1” part of the 0..1

cardinality), then one or more MPMPolicyTarget objects can be aggregated by this particular

MPMPolicyStructure object. Note that the cardinality on the part side (MPMPolicyTarget) is 1..*;

this cardinality was chosen to make explicit that any MPMPolicy object must contain at least one

MPMPolicyTarget object to be considered a valid policy rule. Otherwise, there are no objects to

apply the MPMPolicy to.

 An MPMPolicyStructure object, or any of its subclasses, MUST aggregate one

or more MPMPolicyTarget objects.

The MPMHasPolicyTargetDetail object is a concrete association class, and defines the semantics

of the MPMHasPolicyTarget aggregation. The attributes and relationships of this class can be used

to define which MPMPolicyTarget objects can be attached to which particular set of

MPMPolicyStructure objects. These semantics can be further enhanced by using the Policy Pattern

to define policy rules that constrain which part objects (i.e., MPMPolicyTarget) are attached to

which object. Note that MCMPolicyStructure is an abstract class that is the superclass of

imperative, declarative, and intent policy rules.

8.7.2.3 The MPMPolicyHasMPMPolicyStatement Aggregation

This is an mandatory aggregation, and defines the set of MPMPolicyStatement objects that are

attached to this particular MPMPolicyStructure object. The attachment of different

MPMPolicyStatement objects changes the content, and hence the behavior, of a given

MPMPolicyStructure object. The semantics of this aggregation are defined by the

MPMHasPolicyStatementDetail association class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 45

MPMPolicyStatement objects define the content of a given MPMPolicyStructure object. Every

MPMPolicyStructure object consists of one or more MPMPolicyStatement objects. An

MPMPolicyStatement object may be decorated by zero or more MPMPolicyComponentDecorator

objects.

The multiplicity of this aggregation is 0..1 - 1..n. This means that this aggregation is optional (i.e.,

the “0” part of the 0..1 cardinality). If this aggregation is instantiated (i.e., the “1” part of the 0..1

cardinality), then one or more MPMPolicyStatement objects can be aggregated by this particular

MPMPolicyStructure object. Note that the cardinality on the part side (MPMPolicyStatement) is

1..*; this cardinality was chosen to make explicit that any MPMPolicy object must contain at least

one MPMPolicyStatement object to be considered a valid policy rule. Otherwise, the MPMPolicy

is malformed, and does not contain any content statements.

 An MPMPolicyStructure object, or any of its subclasses, MUST aggregate one

or more MPMPolicyStatement objects.

The MPMHasPolicyStatementDetail object is a concrete association class, and defines the

semantics of the MPMHasPolicyStatement aggregation. The attributes and relationships of this

class can be used to define which MPMPolicyStatement objects can be attached to which particular

set of MPMPolicyStructure objects. These semantics can be further enhanced by using the Policy

Pattern to define policy rules that constrain which part objects (i.e., MPMPolicyStatement) are

attached to which object. Note that MCMPolicyStructure is an abstract class that is the superclass

of imperative, declarative, and intent policy rules.

8.7.3 MPMPolicyStructure Subclasses

The MPMPolicyStructure class currently defines three subclasses, which are described in the

following subsections. Figure 12 will be used to describe each of these three subclasses.

8.7.3.1 MPMImperativePolicy Class Definition

This is a mandatory abstract class, which is a type of PolicyContainer that is used to represent

imperative policy rules. An imperative policy explicitly defines how the state of the target

MCMManagedEntity objects will be affected. This version of this specification supports two types

of imperative policy rules: (1) ECA policy rules and (2) commands.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 46

Figure 12 shows the attributes of this class, and Table 6 defines the attributes for this class.

Attribute Name Description

mpmImpPolPriority :

Integer[0..1]

This is an optional non-negative integer attribute that defines

the priority of this particular MPMImperativePolicy object. A

larger value indicates a higher priority.

Priority can be used to resolve conflicts among policy actions.

For example, given a set of conflicting policy rules, it can be

used to define which policy rule will will execute. It can also be

used to define the execution order of a set of policy rules.

 A default value of 0 MAY be assigned.

mpmImpPolExecStrategy :

MPMImpPolExecStrategy[1]

This is a mandatory non-negative integer attribute that defines

the execution strategy of this particular MPMImperativePolicy

object. The execution strategy consists of the order that actions

will execute, and whether encountering an error terminates the

process of executing actions or not.

 If no actions are contained in this MPMImperativePolicy

class, then an error MUST be returned.

Table 6. Attributes of the MPMImperativePolicy Class

Table 7 defines the operations for this class.

Figure 12. MPMPolicyStructure Subclasses

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 47

Operation Name Description

getMPMImpPolPriority() :

Integer[1..1]

This operation returns the current value of the

mpmImpPolRulePriority attribute. This operation takes

no input parameters.

 If the mpmImpPolRulePriority attribute does not

have a value, then this operation MUST return an

error.

setMPMImpPolPriority (in

polRulePriority : Integer[1..1])

This operation sets the value of the

mpmImpPolRulePriority attribute. This operation takes a

single input parameter, called polRulePriority, which

defines the new value for the mpmImpPolRulePriority

attribute.

 The value of the mpmImpPolRulePriority attribute

MUST be a non-negative integer.

getMPMImpPolExecStrategy()

: MPMImpPolExecStrategy

[1..1]

This operation returns the current value of the

mpmImpPolExecStrategy attribute. This operation takes

no input parameters.

 If the mpmImpPolExecStrategy attribute does not

have a value, then this operation MUST return an

error.

setMPMImpPolExecStrategy(in

newStrategy :

MPMImpPolExecStrategy[1..1])

This operation sets the value of the

mpmImpPolExecStrategy attribute. This operation takes

a single input parameter, called newStrategy, which

defines the new value for the mpmImpPolExecStrategy

attribute. Valid values are defined by the

MPMImpPolExecStrategy enumeration.

Table 7. Operations of the MPMImperativePolicy Class

8.7.3.1.1 MPMECAPolicy Class Definition

This is a mandatory concrete class, whose superclass is MPMImperativePolicy. An MPMECA-

Policy is a PolicyContainer that aggregates a set of events, conditions, and actions into an

imperative policy rule known as an Event-Condition-Action (ECA) policy rule. This has the

following semantics:

 IF the event portion of the policy rule evaluates to TRUE

 IF the condition portion of the policy rule evaluates to TRUE

 THEN actions in the action portion of the policy rule may be executed

 ENDIF

 ENDIF

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 48

In the above definition:

• An event is a Boolean statement that represents something that happens or is happening

that triggers a decision-making process to start

• A condition is a Boolean statement that is an evaluation in a decision-making process

• An action is a Boolean statement that defines an atomic computation that is executed as a

result of a decision-making process

The event, condition, and action portions of an MPMECAPolicy will be referred to as Event,

Condition, and Action Statements (to differentiate them from Event, Condition, and Action

objects). The Event, Condition, and Action Statements are all Boolean statements (i.e., a statement

that produces a value of either true or false). An MPMECAPolicy refines the notion of an

MPMImperativePolicy by mandating that at least one Event or Condition Statement is present,

and at least one Action Statement is present.

 An MPMECAPolicy MUST contain at least one Event Statement or at least

one Condition Statement.

 An MPMECAPolicy MUST contain at least one Action Statements.

Any Boolean statement can be combined with another Boolean statement to form compound

Boolean statements using any of the logical connectives (i.e., AND, OR, and NOT). This realizes

the concept of a portion of an MPMECAPolicy evaluating to true. For example, if an event Boolean

clause is true, that satisfies the first IF statement in the above pseudocode. As another example,

the event portion of an MPMECAPolicy may consist of two or more Boolean statements; this

enables the evaluation of the event portion to be determined by the Boolean value of each statement

according to the logical connectives that are present in the event portion. Boolean statements are

realized by the MPMBooleanStatement class (see section 8.8.3.2). Note that other types of

MPMPolicyStatements may be combined with one or more MPMBooleanStatements for any of

the Event, Condition, and Action Statements. In addition, any Event, Condition, or Action

Statement can be decorated with a concrete subclass of the MPMPolicyComponentDecorator class

(see section 8.8.5).

An MPMECAPolicy must have an action portion that is made up of one or more

MPMPolicyStatements. An MPMECAPolicy can have a null event or condition, but not both.

The following requirements summarize the structural semantics of an MPMECAPolicy.

 An MPMECAPolicy MAY contain one or more Event Statements.

 If an MPMECAPolicy does not contain an Event Statement, the Condition

Statement MUST both trigger the start of the decision-making process and

evaluate the decision.

 An MPMECAPolicy MAY contain one or more Condition Statements.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 49

 If an MPMECAPolicy does not contain a Condition Statement, the Event

Statement MUST both trigger the start of the decision-making process and

evaluate the decision.

 Either the Event Statement or the Condition Statement, but not both, MAY be

NULL in an MPMECAPolicy.

The following requirements summarize the behavioral semantics of an MPMECAPolicy.

 An MPMECAPolicy MUST contain one or more MPMBooleanStatements.

 An MPMECAPolicy MAY contain other types of MPMPolicyStatements.

 Each of the Event, Condition, and Action Statements MUST contain one or

more MPMBooleanStatements.

 Any MPMBooleanStatement MAY contain other types of

MPMPolicyStatements, as long as their addition does not prevent the

MPMBooleanStatement from evaluating to either true or false.

 Any MPMBooleanStatement MAY be decorated by one or more concrete

subclasses of the MPMPolicyComponentDecorator class.

There are currently no attributes or methods defined for this class. Its purpose is to provide a

concrete realization of a particular type of MPMImperativePolicy with the above semantics.

8.7.3.1.2 MPMCommandPolicyRule Class Definition

This is a mandatory concrete class, whose superclass is MPMImperativePolicy. An

MPMCommandPolicy is a PolicyContainer that contains one or more Action Statements.

Stylistically, it corresponds to the imperative mood in English.

 An MPMCommandPolicy MUST contain one or more Action Statements.

 An instance of this class MUST NOT contain Event or Condition Statements.

 Each Action Statement MUST contain one or more MPMBooleanStatements.

 Any MPMBooleanStatement MAY contain other types of

MPMPolicyStatements, as long as their addition does not prevent the

MPMBooleanStatement from evaluating to either true or false.

 Any MPMBooleanStatement MAY be decorated by one or more concrete

subclasses of the MPMPolicyComponentDecorator class.

The difference between an MPMCommandPolicy and an MPMECAPolicy is that the former only

has a set of Action Statements, whereas the latter has either an Event and/or a Condition Statement

in addition to an Action Statement.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 50

There are currently no attributes or methods defined for this class. Its purpose is to provide a

concrete realization of a particular type of MPMImperativePolicy that does not need Event and

Condition Statements.

8.7.3.2 MPMDeclarativePolicy Class Definition

This is a mandatory concrete class, which is a type of PolicyContainer that is used to represent

declarative policy rules. Figure 12 shows the attributes and operations of this class.

A declarative policy uses statements to express the goals of the policy, but not how to accomplish

those goals.

In this document, Declarative Policy will refer to policies that execute as theories of a formal logic.

 A Declarative Policy MUST be written using propositional, predicate, or a

higher form of a formal logic.

Table 8 defines the attributes for this class.

Attribute Name Description

mpmDecPolLogicType :

MPMFormalLogicType[1..1]

This is a mandatory non-negative enumerated integer. It

defines the type of formal logic used by this

MPMDeclarativePolicy object. Allowed values of this

enumeration are defined by the MPMFormalLogicType

enumeration.

Table 8. Attributes of the MPMDeclativePolicy Class

Table 9 defines the operations for this class.

Operation Name Description

getMPMDeclLogicType() :

MPMFormalLogicType[1..1]

This operation returns the current value of the

mpmDecPolLogicType attribute. This operation takes no

input parameters.

 If the mpmDecPolLogicType attribute does not

have a value, then this operation MUST return an

error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 51

setMPMDeclLogicType(in

polLogicType :

MPMFormalLogicType[1..1])

This operation sets the value of the

mpmDecPolLogicType attribute. This operation takes a

single input parameter, called polLogicType, which

defines the new value for the mpmDecPolLogicType

attribute. The allowed values for the

mpmDecPolLogicType attribute are defined by the

MPMFormalLogicType attribute.

Table 9. Operations of the MPMDeclativePolicy Class

8.7.3.3 MPMIntentPolicy Class Definition

This is a mandatory concrete class, which is a type of PolicyContainer that is used to represent

intent policy rules. Figure 12 shows the attributes and operations of this class.

An intent policy is a type of policy that uses statements from a restricted natural language to

express the goals of the policy, but not how to accomplish those goals. An Intent Policy is written

in a Controlled Language (i.e., a language that restricts the grammar and vocabulary used). In

particular, formal logic syntax is not used. This version of this specification will use a restricted

version of English. Controlled languages simplify machine translation of the source content, and

enable the source content to be translated to other types of languages. An example of a Controlled

Language is Attempto Controlled English; most Domain Specific Languages (DSLs) are also

Controlled Languages.

 An Intent Policy MUST be written in a Controlled Language.

 An Intent Policy MAY be written in a DSL.

An example of a DSL for use by MPMIntentPolicy objects is provided in Appendix A. In general,

each statement in an Intent Policy may require the translation of one or more of its terms to a form

that another MCMManagedEntity can understand.

In general, a newly written intent is likely to not be directly executable. This is because of

ambiguities in using a Controlled Language, as well as the use of more abstract comments. For

example, a Customer might be referred to by name; this would need to be translated to a form that

is machine processable (e.g., an IP address).

Table 10 defines the attributes for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 52

Attribute Name Description

mpmIntentTranslationStatus :

MPMIntentTranslationStatus[1..1]

This is a mandatory non-negative enumerated integer,

and defines the status of the translation of the content of

this MPMIntentPolicy. Allowed values of this

enumeration are defined in the

MPMIntentTranslationStatus enumeration.

 If the value of the mpmIntentTranslationStatus

attribute is not 2 (i.e., SUCCESS), then this

MPMIntentPolicy MUST NOT be executed.

Table 10. Attributes of the MPMIntentPolicy Class

Table 11 defines the operations for this class.

Operation Name Description

getMPMIntentTranslationStatus()

:

MPMIntentTranslationStatus[1..1]

This operation returns the current value of the

mpmIntentTranslationStatus attribute. This operation

takes no input parameters.

 If the mpmIntentTranslationStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMIntentTranslationStatus(in

intentTranslationStatus :

MPMIntentTranslationStatus[1..1])

This operation sets the value of the

mpmIntentTranslationStatus attribute. This operation

takes a single input parameter, called

intentTranslationStatus, which defines the new value

for the mpmIntentTranslationStatus attribute. Valid

values are defined by the

MPMIntentTranslationStatus enumeration.

Table 11. Operations of the MPMIntentPolicy Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 53

8.8 MPMPolicyComponentStructure Class Hierarchy

The structure of the top portion of this class hierarchy is shown in Figure 13. This class hierarchy

is defined to facilitate adding new types of policy components later. The main “worker” class is

MPMPolicyStatement; concrete subclasses of this class are aggregated by all types of policy rules

(i.e., concrete subclasses of MPMPolicyStructure). An MPMPolicyStatement object may

optionally be made up of MPMPolicyClause objects. MPMPolicyComponentDecorator is used to

define optional objects (or parts of an object) to decorate, or wrap, concrete subclasses of

MPMPolicyStatement and/or MPMPolicyClause objects.

8.8.1 MPMPolicyComponentStructure Class Definition

This is a mandatory abstract class. It is the superclass for all types of components that may be

contained in a particular type of an MPMPolicy. In this model, the type of Policy (e.g., imperative,

declarative, intent) is a type of PolicyContainer. The type of PolicyContainer defines the type of

MPMPolicyStructureComponent objects that it can contain.

This release will define imperative, declarative, and intent policies. However, the structure of this

hierarchy is defined to facilitate adding new types of policies later.

This version of this specification does not define any attributes for this class. Its main purpose is

from an ontological perspective, as it is used as the superclass for all types of components that can

be contained by all types of policies that are defined by the MPM.

8.8.2 MPMPolicyComponentStructure Relationships

The MPMPolicyComponentStructure class is involved in one aggregation, which is called the

MPMPolicyHasMPMPolicyComponentDecorator aggregation. This is an optional aggregation,

Figure 13. The Top Portion of the MPMPolicyComponentStructure Hierarchy

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 54

and defines the set of MPMPolicyComponentDecorator objects that wrap, or decorate, this

particular MPMPolicyComponentStructure object. An MPMPolicyComponentStructure object

may be decorated by zero or more MPMPolicyComponentDecorator objects. The semantics of this

aggregation are defined by the MPMPolicyHasMPMPolicyComponentDecoratorDetail

association class.

The attachment of different MPMPolicyComponentDecorator objects changes the syntax,

semantics, and behavior of a given MPMPolicyComponentStructure object.

The multiplicity of this aggregation is 0..1 - 0..n. This means that this aggregation is optional (i.e.,

the “0” part of the 0..1 cardinality). If this aggregation is instantiated (i.e., the “1” part of the 0..1

cardinality), then zero or more MPMPolicyComponentDecorator objects can decorate this

particular MPMPolicyComponentStructure object. The 0..* cardinality enables an

MPMPolicyComponentStructure object to be defined without having to define an associated

MPMPolicyComponentDecorator object for it to decorate.

The MPMPolicyHasMPMPolicyComponentDecoratorDetail object is a concrete association class,

and defines the semantics of the MPMPolicyHasMPMPolicyComponentDecorator aggregation.

The attributes and relationships of this class can be used to define which

MPMPolicyComponentDecorator objects can decorate this particular set of

MPMPolicyComponentStructure objects. These semantics can be further enhanced by using the

Policy Pattern to define policy rules that constrain which part objects (i.e.,

MPMPolicyComponentDecorator) are attached to which object. Note that MCMPolicyStructure

is an abstract class that is the superclass of imperative, declarative, and intent policy rules.

8.8.3 MPMPolicyComponentStructure Subclasses: MPMPolicyStatements

This section describes the main subclasses of the MPMPolicyComponentStructure hierarchy that

define MPMPolicyStatement classes. This class and its concrete subclasses, frequently use the

MPMPolicyClause class (this is described in section 8.8.4) and subclasses of

MPMPolicyComponentDecorator (this is described in section 8.8.5).

8.8.3.1 MPMPolicyStatement Class Definition

This is a mandatory abstract class. It separates the representation of an MPMPolicy from its

implementation.

An MPMPolicy, regardless of its structure and semantics, can be abstracted into a set of statements,

which are instances of this class. Each statement can optionally be abstracted into a set of clauses,

which are instances of MPMPolicyClause (see section 8.8.4). Each clause is made up of a set of

policy elements. Thus, the type of MPMPolicyStructure determines the type of statements that it

can contain; this in turn determines the types of clauses and policy elements that are allowed by

this type of statement.

There are two ways to enforce the semantics of restricting the type of MPMPolicyStatements that

can be contained in a particular type of MPMPolicyStructure:

• Use the MPMPolicyHasMPMPolicyStatementDetail association class

• Define OCL

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 55

The first method avoids the use of OCL, but is harder to implement. It uses the model elements of

the MPMPolicyHasMPMPolicyStatementDetail association class to define explicit semantics to

restrict the type of MPMPolicyStatement, and their decorations, that can be contained by this

particular type of MPMPolicyStructure. The second is easier, since OCL is a formal language that

enables these semantics to be easily defined. However, some implementations do not support OCL,

so the particular choice of which method to use is left to the implementer.

Figure 14 shows the attributes, operations, and relationships of the MPMPolicyStatement class.

Table 12 defines the attributes for this class.

Figure 14. The MPMPolicyStatement Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 56

Attribute Name Description

mpmPolStmtAdminStatus :

MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative

integer attribute that defines the current

administrative status of this particular

MPMPolicy-Statement object. The allowable

values of this enumeration are defined by the

MPMPolicyAdminStatus enumeration.

mpmPolStmtConstrainMethod :

MPMPolMethodConstrainMechanism[0..1]

This is a non-negative enumerated integer,

and defines the mechanism used to constrain

which concrete subclasses of

MPMPolicyStatement can be used with this

particular concrete subclass of

MPMPolicyStructure. Allowed values are

defined in the

MPMPolStmtConstrainMechanism

enumeration.

mpmPolStmtDeployStatus :

MPMPolStatementDeployStatus[0..1]

This is an optional enumerated, non-negative

integer attribute. It is used to indicate whether

this MPMPolicyStatement can or cannot be

deployed by the policy management system.

This attribute enables the policy manager to

know which MPMPolicies are currently

deployed, and may be useful for the policy

execution system for planning the staging of

MPMPolicies. The allowable values of this

enumeration are defined by the

MPMPolicyDeployStatus enumeration.

mpmPolStmt-

DesignStatus : MPMPolicy-

DesignStatus[0..1]

This is an optional enumerated, non-negative

integer whose value defines the current

design status of this MPMPolicyStatement

object. The allowed set of values are defined

in the MPMPolicyDesignStatus enumeration.

mpmPolStmtExecStatus :

MPMPolicyExecStatus[1..1]

This is a mandatory enumerated non-negative

enumerated integer whose value defines the

current execution status of this

MPMPolicyStatement object. The allowed set

of values are defined in the

MPMPolicyExecStatus enumeration.

mpmPolStmtConflictStatus :

MPMPolStmtConflictStatus[1..1]

This is an optional enumerated, non-negative

integer whose value defines whether this

particular MPMPolicyStatement has, or ever

had, a conflict with another

MPMPolicyStatement. The allowed set of

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 57

values are defined in the

MPMPolStmtConflictStatus enumeration.

 If the value of this attribute is not

“RESOLVED” or “NONE”, then this

MPMPolicyStatement object MUST

NOT be used.

Table 12. Attributes of the MPMPolicyStatement Class

Table 13 defines the operations for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 58

Operation Name Description

getMPMPolStmtAdminStatus() :

MPMPolicyAdminStatus[1..1]

This operation returns the current value of the

mpmPolStmtAdminStatus attribute. This

operation takes no input parameters.

 If the mpmPolStmtAdminStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolStmtAdminStatus(in

newStatus :

MPMPolicyAdminStatus[1..1])

This operation sets the value of the

mpmPolStmtAdminStatus attribute. This

operation takes a single input parameter, called

newStatus, which defines the new value for the

mpmPolStmtAdminStatus attribute. Valid

values are defined by the

MPMPolicyAdminStatus enumeration.

getMPMPolStmtConstrainMethod() :

MPMPolStmtConstrainMechanism[1..1]

This operation returns the current value of the

mpmPolConstrainMethod attribute. This

operation takes no input parameters.

 If the mpmPolConstrainMethod attribute

does not have a value, then this operation

MUST return an error.

setMPMPolStmtConstrainMethod (in

newStatus :

MPMPolStmtConstrainMechanism[1..1])

This operation sets the value of the

mpmPolConstrainMethod attribute. This

operation takes a single input parameter, called

newStatus, which defines the new value for the

mpmPolConstrainMethod attribute. Valid

values are defined by the

MPMPolStmtConstrainMechanism

enumeration.

getMPMPolStmtDeployStatus() :

MPMPolicyDeployStatus[1..1]

This operation returns the current value of the

mpmPolStmtDeployStatus attribute. This

operation takes no input parameters.

 If the mpmPolStmtDeployStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolStmtDeployStatus(in

newStatus :

MPMPolicyDeployStatus[1..1])

This operation sets the value of the

mpmPolStmt-

DeployStatus attribute. This operation takes a

single input parameter, called newStatus, which

defines the new value for the

mpmPolStmtDeployStatus attribute. Valid

values are defined by the

MPMPolicyDeployStatus enumeration.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 59

getMPMPolStmtDesignStatus() :

MPMPolicyDesignStatus[1..1]

This operation returns the current value of the

mpmPolStmtDesignStatus attribute. This

operation takes no input parameters.

 If the mpmPolStmtDesignStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolStmtDesignStatus(in

newStatus :

MPMPolicyDesignStatus[1..1])

This operation sets the value of the

mpmPolStmt-

DesignStatus attribute. This operation takes a

single input parameter, called newStatus, which

defines the new value for the

mpmPolStmtDesignStatus attribute. Valid

values are defined by the

MPMPolicyDesignStatus enumeration.

getMPMPolStmtExecStatus() :

MPMPolicyExecStatus[1..1]

This operation returns the current value of the

mpmPolStmtExecStatus attribute. This

operation takes no input parameters.

 If the mpmPolStmtExecStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolStmtExecStatus(in newStatus

: MPMPolicyExecStatus[1..1])

This operation sets the value of the

mpmPolStmtExecStatus attribute. This

operation takes a single input parameter, called

newStatus, which defines the new value for the

mpmPolStmtExecStatus attribute. Valid values

are defined by the MPMPolicyExecStatus

enumeration.

getMPMPolStmtConflictStatus() :

MPMPolStmtConflictStatus[1..1])

This operation returns the current value of the

mpmPolStmtConflictStatus attribute. This

operation takes no input parameters.

 If the mpmPolStmtConflictStatus

attribute does not have a value, then this

operation MUST return an error.

setMPMPolStmtConflictStatus(in

newStatus :

MPMPolStmtConflictStatus[1..1])

This operation sets the value of the

mpmPolStmtConflictStatus attribute. This

operation takes a single input parameter, called

newStatus, which defines the new value for the

mpmPolStmtConflictStatus attribute. Valid

values are defined by the

MPMPolStmtConflictStatus enumeration.

getMPMPolicyClauseList() :

MPMPolicyClause[1..*]

This operation retrieves the set of

MPMPolicyClause objects that are contained in

this particular MPMPolicyStatement object.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 60

This is obtained by following the

MPMStatementHasMPMPolicyClause

aggregation.

Each instance of this aggregation defines an

MPMPolicyClause object, which is then added

to the return value of this operation. The return

value of this operation is an array of one or

more MPMPolicyClause objects. This operation

takes no input parameters.

 If this MPMPolicyStatement object does

not instantiate this aggregation, then this

operation SHOULD return a NULL

MPMPolicyClause object.

setMPMPolicyClauseList(in

newClauseList : MPMPolicyClause[1..*])

This operation defines a new set of

MPMPolicyClause objects that will be

contained in this particular

MPMPolicyStatement object. This operation

takes a single input parameter, called

newClauseList, which defines a set of one or

more MPMPolicyClause objects. If this

MPMPolicyStatement object already has a set

of one or more MPMPolicyClause objects that

it contains, then those MPMPolicyClause

objects will be deleted by first, deleting the

accompanying association class, and second,

deleting the corresponding association. Then, a

new association (an instance of

MPMStatementHasMPMPolicyClause) is

created for each MPMPolicyClause object in

the newClauseList parameter.

 Every association created SHOULD

have a new association class created to

realize the semantics of that association.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 61

setMPMPolicyClausePartialList(in

newClauseList : MPMPolicyClause[1..*])

This operation defines a new set of

MPMPolicyClause objects that will be

contained in this particular

MPMPolicyStatement object. This operation

takes a single input parameter, called

newClauseList, which defines a set of one or

more MPMPolicyClause objects. If this

MPMPolicyStatement object already has a set

of one or more MPMPolicyClause objects that

it contains, then those MPMPolicyClause

objects are ignored. Then, a new association (an

instance of

MPMStatementHasMPMPolicyClause) is

created for each MPMPolicyClause object in

the newClauseList.

 Every association created SHOULD

have a new association class created to

realize the semantics of that association.

 Any association between this

MPMPolicyStatement object and other

MPMPolicyClause objects that is not

specified in the newClauseList MUST

NOT be affected.

delMPMPolClauseObjectList()

This operation removes all instances of the

MPMStatementHasMPMPolicyClause

aggregation, and its association classes, that

enables this particular MPMPolicyStatement

object to contain any MPMPolicyClause

objects. This operation does NOT affect either

the MPMPolicyClause object or the

MPMPolicyStatement object; it just deletes the

association between this MPMPolicyStatement

object and this MPMPolicyClause object. This

operation has no input parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 62

delMPMPolClauseObjectPartialList(in

newClauseList: MPMPolicyClause[1..*])

This operation removes the association, and its

association class, for each MPMPolicyClause

object in the newClauseList that is contained by

this particular MPMPolicyStatement object.

This operation takes a single input parameter,

called newClauseList, that defines the set of

MPMPolicyClause objects that will be unlinked

from this particular MPMPolicyStatement

object. This operation does NOT affect either

the MPMPolicyStatement object or the

MPMPolicyClause object; it just deletes the

association between this MPMPolicyStatement

object and this MPMPolicyClause object.

 Any association between this

MPMPolicyStatement object and other

MPMPolicySource objects that is not

specified in the newClauseList MUST

NOT be affected.

Table 13. Operations of the MPMPolicyStatement Class

The MPMPolicyStatement class participates in two aggregations.

8.8.3.1.1 The MPMPolicyHasMPMPolicyStatement Aggregation

This is an aggregation that was defined in section 8.7.2.3. This defines the set of

MPMPolicyStatement objects that form the content of a given MPMPolicyStructure.

8.8.3.1.2 The MPMStatementHasMPMPolicyClause Aggregation

This is an aggregation that defines the set of MPMPolicyClause objects that make up this particular

MPMPolicyStatement.

This aggregation enables the content of an MPMPolicyStatement to be changed without affecting

the rest of the MPMPolicy.

The multiplicity of this aggregation is 0..1 - 0..n. This means that it is an optional aggregation (i.e.,

the “0” part of the 0..1 cardinality). If this aggregation is instantiated (i.e., the “1” part of the 0..1

cardinality), then zero or more MPMPolicyClause objects define the content of this particular

MPMPolicyStatement object. The 0..* cardinality enables an MPMPolicyStatement object to be

defined without having to define an associated MPMPolicyClause object for it to aggregate. The

semantics of this aggregation are defined by the MPMStatementHasMPMPolicyClauseDetail

association class. This enables the management system to control which set of concrete subclasses

of MCMPolicyStatement can aggregate which types of MPMPolicyClause objects.

The MPMStatementHasMPMPolicyClauseDetail is a concrete association class, and defines the

semantics of the MPMStatementHasMPMPolicyClause aggregation. The attributes and

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 63

relationships of this class can be used to define which MPMPolicyClause objects can be

aggregated by which particular set of MCMPolicyStatement objects. These semantics can be

further enhanced by using the Policy Pattern to define policy rules that constrain which part objects

(i.e., MPMPolicyClause) are attached to which MCMPolicyStatement object. Note that

MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent

policy rules.

8.8.3.2 MPMBooleanStatement Class Definition

An MPMBooleanStatement specializes an MPMPolicyStatement, and defines a statement that

evaluates to either true or false.

An MPMBooleanStatement may be made up of one or more Boolean clauses, which is a subclass

of the MPMPolicyClause class (see section 8.8.4). This is modeled using the

MPMStatementHasMPMPolicyClause aggregation.

Boolean expressions correspond to propositional formulas in logic. Hence, an

MPMBooleanStatement may be used by imperative, declarative, and intent policies.

Figure 15 shows the MPMBooleanStatement class, along with its sibling classes.

Table 14 defines the attributes for the MPMBooleanStatement class.

Figure 15. Subclasses of the MPMPolicyStatement Class

https://en.wikipedia.org/wiki/Propositional_formula

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 64

Attribute Name Description

mpmBoolStmtBindValue

: Integer[1..*]

This is a mandatory array of positive integers that defines the

order in which constituent terms bind to this

MPMBooleanStatement. For example, the Boolean expression

 "((A AND B) OR (C AND NOT (D OR E)))"

has the following binding order: terms A and B have a bind value

of 1; term C has a binding value of 2, and terms D and E have a

binding value of 3.

 All values in this attribute MUST be greater than 0.

mpmBoolStmtIsCNF :

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this MPMBooleanStatement is in

Conjunctive Normal Form. Otherwise, it is in Disjunctive

Normal Form.

mpmBoolStmtIsNegated:

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this (entire) MPMBooleanStatement is

negated.

Table 14. Attributes of the MPMBooleanStatement Class

Table 15 defines the operations for the MPMBooleanStatement class.

Operation Name Description

getMPMBoolStmt-

BindValueList() :

Integer[1..*]

This operation returns the current value of the

mpmBoolStmtBindValue attribute, which is an array of

positive integers. This operation takes no input parameters.

 If the mpmBoolStmtBindValue attribute does not

have a value, then this operation MUST return an

error.

setMPMBoolStmt-

BindValueList (in

newBindList : Integer[1..1])

This operation sets the value of the

mpmBoolStmtBindValue attribute. This operation takes a

single input parameter, called newBindList, which defines

the new value(s) for the mpmBoolStmtBindValue attribute.

The newBindList is an array of non-zero positive integers.

 All values in this attribute MUST be greater than 0.

getMPMBoolStmtIsCNF() :

Boolean[1..1]

This operation returns the current value of the

mpmBoolStmtIsCNF attribute. This operation takes no

input parameters.

 If the mpmBoolStmtIsCNF attribute does not have a

value, then this operation MUST return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 65

setMPMBoolStmtIsCNF (in

newStatus : Boolean[1..1])

This operation sets the value of the mpmBoolStmtIsCNF

attribute. This operation takes a single input parameter,

called newStatus, which defines the new value for the

mpmBoolStmtIsCNF attribute.

getMPMBoolStmtIsNegated()

: Boolean[1..1]

This operation returns the current value of the

mpmBoolStmtIsNegated attribute. This operation takes no

input parameters.

 If the mpmBoolStmtIsNegated attribute does not have

a value, then this operation MUST return an error.

setMPMBoolStmtIsNegated

(in newStatus : Boolean[1..1])

This operation sets the value of the mpmBoolStmtIsNegated

attribute. This operation takes a single input parameter,

called newStatus, which defines the new value for the

mpmBoolStmtIsNegated attribute.

Table 15. Operations of the MPMBooleanStatement Class

Note that there are no operations that retrieve the number of MPMBooleanClause objects from an

MPMBooleanStatement. This is because of two reasons. First, the MPMBooleanStatement object

inherits the MPMStatementHasMPMPolicyClause aggregation from its superclass. Second, the

MPMBooleanStatement can aggregate more than one type of MPMPolicyClause object.

8.8.3.3 MPMAssertionStatement Class Definition

An MPMAssertionStatement is a collection of 2 or more MPMAssertionClauses (see section

8.8.4.1.). The canonical form of an MPMAssertionStatement is a 3-tuple, containing three

MPMAssertionClauses:

 <pre-condition, post-condition, invariant>

In this definition

• pre-conditions are predicates that must be true in order for a method or function to execute

• post-conditions are predicates that must be true after a method or function has executed

• attributes are predicates that must be true during the life of method or function execution

This 3-tuple is especially useful when reasoning about whether a computer program is correct. An

enumeration (MPMAssertionStatementType) is defined that specifies what types of

MPMAssertionClauses are used by this particular MPMAssertionStatement.

Figure 15 shows the MPMAssertionStatement class.

Table 16 defines the attributes for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 66

Attribute Name Description

mpmAssertStmtResponse :

Boolean[1..1]

This is a mandatory Boolean attribute that provides a

Boolean response for this MPMAssertionStatement.

This enables this MPMAssertionStatement to be

combined with other subclasses of an

MPMPolicyStatement that provide a Boolean value

that defines the status as to their correctness and/or

evaluation state. This enables this object to be used to

construct more complex MPMPolicyStatements.

mpmAssertStmtType :

MPMAssertionStatementType[1..1]

This is a mandatory enumerated non-negative integer

attribute that defines the composition of this particular

MPMAssertionStatement object. The allowable

values of this enumeration are defined by the

MPMAssertionStatementType enumeration.

Table 16. Attributes of the MPMAssertionStatement Class

Table 17 defines the operations for this class.

Operation Name Description

getMPMAssertStmtResponse() :

Boolean[1..1]

This operation returns the current value of the

mpmAssertStmtResponse attribute. This operation

takes no input parameters.

 If the mpmAssertStmtResponse attribute does

not have a value, then this operation MUST

return an error.

setMPMAssertStmtResponse (in

newValue : Boolean[1..1])

This operation sets the value of the

mpmAssertStmtResponse attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for the

mpmAssertStmtResponse attribute.

getMPMAssertStmtType() :

MPMAssertionStatementType[1..1]

This operation returns the current value of the

mpmAssertStmtType attribute. This operation takes

no input parameters.

 If the mpmAssertStmtType attribute does not

have a value, then this operation MUST return

an error.

setMPMAssertStmtType(in

newValue :

MPMAssertionStatementType[1..1])

This operation sets the value of the

mpmAssertStmtType attribute. This operation takes a

single input parameter, called newValue, which

defines the new value for the mpmAssertStmtType

attribute.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 67

Table 17. Operations of the MPMAssertionStatement Class

Note that there are no operations that retrieve the number of MPMAssertionClause objects from

an MPMAssertionStatement. This is because of two reasons. First, the MPMAssertionStatement

object inherits the MPMStatementHasMPMPolicyClause aggregation from its superclass. Second,

the MPMAssertionStatement can aggregate more than one type of MPMPolicyClause object.

8.8.3.4 MPMEncodedStatement Class Definition

An MPMEncodedStatement represents a policy statement as an encoded object. This class defines

a generalized extension mechanism for representing MPMPolicyStatements that have not been

modeled with other MPMPolicyComponentStructure objects.

This class encodes the contents of the policy clause directly into the attributes of the

MPMEncodedStatement. Hence, MPMEncodedStatement objects are reusable at the object level,

whereas other types of MPMPolicyStatement objects are reusable at the individual policy

expression level.

The benefit of an MPMEncodedStatement is that it enables direct encoding of the text of the

MPMPolicyStatement, without having the "overhead" of using other objects. However, note that

while this method is efficient, it does not reuse other MPMPolicyComponentStructure objects.

Furthermore, its potential for reuse is reduced, as only MPMPolicies that can use the exact

encoding of this clause can reuse this object.

Figure 15 shows the MPMEncodedStatement class.

Table 18 defines the attributes for this class.

Attribute Name Description

mpmEncodedStatementContent :

String[1..1]

This is a mandatory string attribute that defines the

content of this particular MPMEncodedStatement

object. It works with another class attribute, called

mpmEncodedStatementEncoding, which defines how

to interpret the value of this attribute (e.g., as a string or

reference). These two attributes form a tuple, and

together enable a machine to understand the syntax and

value of this object instance.

mpmEncodedStatementEncoding

: MPMEncodingType[1..1]

This is a mandatory enumerated non-negative integer

attribute, and defines how to interpret the value of the

mpmEncodedStatementContent class attribute. These

two attributes form a tuple, and together enable a

machine to understand the syntax and value of the

encoded clause for the object instance of this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 68

mpmEncodedStatementResponse

: Boolean[1..1]

This is a mandatory Boolean attribute that emulates a

Boolean response of this statement, so that it may be

combined with other subclasses of the

MPMPolicyStatement that provide a Boolean value

that defines their correctness and/or evaluation state.

This enables this object to be used to construct more

complex Boolean clauses.

Table 18. Attributes of the MPMEncodedStatement Class

Table 19 defines the operations for this class.

Operation Name Description

getMPMEncodedStmtContent() :

String[1..1]

This operation returns the current value of the

mpmEncodedStatementContent attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMEncodedStmtContent (in

newStatement : String[1..1])

This operation sets the value of the

mpmEncodedStatementContent attribute. This

operation takes a single input parameter, called

newStatement, which defines the new value for the

mpmEncodedStatementContent attribute.

 The value of the mpmEncodedStatementContent

attribute MUST NOT be empty or NULL.

getMPMEncodedStmtEncoding()

: MPMEncodingType[1..1]

This operation returns the current value of the

mpmEncodedStatementEncoding attribute. This

operation takes no input parameters. Valid values are

defined in the MPMEncodingType enumeration.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMEncodedStmtEncoding(in

newEncoding :

MPMEncodingType[1..1])

This operation sets the value of the

mpmEncodedStatementContent attribute. This

operation takes a single input parameter, called

newEncoding, which defines the new value for the

mpmEncodedStatementEncoding attribute.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 69

getMPMEncodedStmtResponse()

: Boolean[1..1]

This operation returns the current value of the

mpmEncodedStatementResponse attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMEncodedStmtResponse(in

: newResponse : Boolean[1..1])

This operation sets the value of the

mpmEncodedStatementResponse attribute. This

operation takes a single input parameter, called

newResponse, which defines the new value for the

mpmEncodedStatementResponse attribute.

Table 19. Operations of the MPMEncodedStatement Class

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an

MPMEncodedStatement. This is because the MPMEncodedStatement object inherits the

MPMStatementHasMPMPolicyClause aggregation from its superclass.

8.8.3.5 MPMTheorem Class Definition

An MPMTheorem is a type of MPMPolicyStatement that has the following characteristics:

 1) it is non-self-evident

 2) it can be proven to be true

The proof of a theorem is defined by the set of MPMPolicyClauses that it is associated with.

Specifically, two or more MPMPremiseClause (see section 8.8.4.3.1) objects must have all been

proven to be true, which makes the associated MPMConclusionClause (see section 8.8.4.3.2) true.

This is found by following the MPMStatementHasMPMPolicyClause aggregation (see section

8.8.3.1.2).

 An MPMTheorem object MUST have previously been proven to be true in

order for it to be used.

Figure 15 shows the MPMTheorem class.

Table 20 defines the attributes for this class.

Attribute Name Description

mpmTheorem-

ProvesHypthesis :

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute

is TRUE, then this MPMTheorem proves a previously unknown

hypothesis. Otherwise, it is the result of previously known axioms

and/or other theorems.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 70

mpmTheoremIsInvalid

: Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute

is TRUE, then this MPMTheorem was rendered incorrect due to

one of its dependent axioms or theorems, that was previously true,

being proved false. This requires revisiting all

MPMPolicyStatements that depended on it.

 If the value of this attribute is FALSE, then the system

MUST set the mpmPolStmtExecStatus to ERROR for this

MPMTheorem.

Table 20. Attributes of the MPMTheorem Class

Table 21 defines the operations for this class.

Operation Name Description

getMPMTheoremProves-

Hypothesis() : Boolean[1..1]

This operation returns the current value of the

mpmTheoremProvesHypothesis attribute. This operation

takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMTheoremProves-

Hypothesis(in newValue :

Boolean[1..1])

This operation sets the value of the

mpmTheoremProvesHypothesis attribute. This operation

takes a single input parameter, called newValue, which

defines the new value for the

mpmTheoremProvesHypothesis attribute.

getMPMTheoremIsInvalid() :

Boolean[1..1]

This operation returns the current value of the

mpmTheoremIsInvalid attribute. This operation takes no

input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMTheoremProves-

Hypothesis(newValue :

Boolean[1..1])

This operation sets the value of the

mpmTheoremIsInvalid attribute. This operation takes a

single input parameter, called newValue, which defines

the new value for the mpmTheoremIsInvalid attribute.

 The value of the mpmTheoremIsInvalid attribute

MUST be either true or false.

 If the value of this attribute is FALSE, then the

system MUST set the mpmPolStmtExecStatus to

ERROR for this MPMTheorem.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 71

Table 21. Operations of the MPMTheorem Class

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an

MPMEncodedStatement. This is because the MPMEncodedStatement object inherits the

MPMStatementHasMPMPolicyClause aggregation from its superclass.

8.8.3.6 MPMAxiom Class Definition

An MPMAxiom is a type of MPMStatement that is taken to always be TRUE. Hence, it serves as

a premise for other types of reasoning. Axioms are linked to MPMPolicyStatements using the

MPMStatementHasMPMPolicyClause aggregation (see section 8.8.3.1.2).

 An MPMAxiom object MUST be defined as true in order for it to be used.

Figure 15 shows the MPMAxiom class.

Table 22 defines the attributes for this class.

Attribute Name Description

mpmAxiomIsDisproved

: Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this MPMAxiom has been proven

FALSE. This requires revisiting all MPMPolicyStatements that

depended on it.

 If the value of this attribute is FALSE, then the system

MUST set the mpmPolStmtExecStatus to ERROR for this

MPMAxiom.

Table 22. Attributes of the MPMAxiom Class

Table 23 defines the operations for this class.

Operation Name Description

getMPMAxiomIsDisproved()

: Boolean[1..1]

This operation returns the current value of the mpmAxiom-

IsDisproved attribute. This operation takes no input

parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 72

setMPMAxiomIsDisproved

(newValue : Boolean[1..1])

This operation sets the value of the

mpmAxiomIsDisproved attribute. This operation takes a

single input parameter, called newValue, which defines the

new value for the mpmAxiomIsDisproved attribute.

 The value of the mpmAxiomIsDisproved attribute

MUST be either true or false.

 If the value of this attribute is FALSE, then the

system MUST set the mpmPolStmtExecStatus to

ERROR for this MPMAxiom.

Table 23. Operations of the MPMAxiom Class

Note that there are no operations that retrieve the number of MPMPolicyClause objects from an

MPMEncodedStatement. This is because the MPMEncodedStatement object inherits the

MPMStatementHasMPMPolicyClause aggregation from its superclass.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 73

8.8.4 MPMPolicyComponentStructure Subclasses: MPMPolicyClause

An MPMPolicyClause is a mandatory abstract class whose subclasses define different types of

clauses that are used to create the content for different types of MPMPolicies. An

MPMPolicyClause serves as a convenient aggregation point for assembling other objects that

make up an MPMPolicyStatement. An MPMPolicyClause, along with its subclasses, is shown in

Figure 16.

An MPMPolicyClause is, as its name implies, a clause (i.e., a part of a statement), and defines all

or part of the content of an MPMPolicyStatement. The decorator pattern is used to enable an

extensible set of objects to "wrap" the MPMPolicyClause; this enables the contents of a

MPMPolicyClause to be adjusted dynamically at runtime without affecting other objects.

MPMPolicyClauses are objects in their own right, which facilitates their reuse.

MPMPolicyClauses can aggregate a set of any of the subclasses of

MPMPolicyComponentDecorator.

Figure 16 shows the MPMPolicyClause class and its subclasses.

Table 24 defines the attributes for this class.

Figure 16. MPMPolicyClause and its Subclasses

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 74

Attribute Name Description

mpmPolClause-

AdminStatus :

MPMPolicy-

AdminStatus[1..1]

This is a mandatory enumerated non-negative integer attribute that

defines the current administrative status of this particular

MPMPolicyClause object. The allowable values of this enumeration

are defined by the MPMPolicyAdminStatus enumeration.

mpmPolClause-

DeployStatus :

MPMPolicy-

DeployStatus[1..1]

This is an optional enumerated, non-negative integer attribute. It is

used to indicate whether this MPMPolicyClause can or cannot be

deployed by the policy management system. This attribute enables

the policy manager to know which MPMClauses are currently

deployed for a given MPMPolicyStatement, and may be useful for

the policy execution system for planning the staging of

MPMPolicies.

The allowable values of this enumeration are defined by the

MPMPolicyDeployStatus enumeration.

mpmPolClause-

DesignStatus :

MPMPolicy-

DesignStatus[1..1]

This is an optional enumerated, non-negative integer whose value

defines the current design status of this MPMPolicyClause object.

The allowed set of values are defined in the MPMPolicyDesignStatus

enumeration.

mpmPolClause-

ExecStatus :

MPMPolicy-

ExecStatus[1..1]

This is a mandatory enumerated non-negative enumerated integer

whose value defines the current execution status of this

MPMPolicyClause object. The allowed set of values are defined in

the MPMPolicyExecStatus enumeration.

Table 24. Attributes of the MPMPolicyClause Class

Table 25 defines the operations for this class.

Operation Name Description

getMPMPolClauseAdmin-

Status() : MPMPolicy-

AdminStatus [1..1]

This operation returns the current value of the

mpmPolClauseAdminStatus attribute. This operation

takes no input parameters.

 If the mpmPolClauseAdminStatus attribute does

not have a value, then this operation MUST return

an error.

setMPMPolClauseAdmin-

Status(in newStatus :

MPMPolicyAdminStatus[1..1])

This operation sets the value of the mpmPolClause-

AdminStatus attribute. This operation takes a single input

parameter, called newStatus, which defines the new

value for the mpmPolClauseAdminStatus attribute. Valid

values are defined by the MPMPolicyAdminStatus

enumeration.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 75

getMPMPolClauseDeploy-

Status() : MPMPolicy-

DeployStatus [1..1]

This operation returns the current value of the

mpmPolClauseDeployStatus attribute. This operation

takes no input parameters.

 If the mpmPolClauseDeployStatus attribute does

not have a value, then this operation MUST return

an error.

setMPMPolClauseDeploy-

Status(in newStatus :

MPMPolicyDeployStatus[1..1])

This operation sets the value of the mpmPolClause-

DeployStatus attribute. This operation takes a single

input parameter, called newStatus, which defines the new

value for the mpmPolStmtDeployStatus attribute. Valid

values are defined by the MPMPolicyDeployStatus

enumeration.

getMPMPolClauseDesign-

Status() : MPMPolicy-

DesignStatus [1..1]

This operation returns the current value of the

mpmPolClauseDesignStatus attribute. This operation

takes no input parameters.

 If the mpmPolClauseDesignStatus attribute does

not have a value, then this operation MUST return

an error.

setMPMPolClauseDesign-

Status(in newStatus :

MPMPolicyDesignStatus[1..1])

This operation sets the value of the mpmPolClause-

DesignStatus attribute. This operation takes a single

input parameter, called newStatus, which defines the new

value for the mpmPolClauseDesignStatus attribute. Valid

values are defined by the MPMPolicyDesignStatus

enumeration.

getMPMPolClauseExec-

Status() : MPMPolicy-

ExecStatus [1..1]

This operation returns the current value of the

mpmPolClauseExecStatus attribute. This operation takes

no input parameters.

 If the mpmPolClauseExecStatus attribute does not

have a value, then this operation MUST return an

error.

setMPMPolClauseExec-

Status(in newStatus :

MPMPolicyExecStatus[1..1])

This operation sets the value of the mpmPolClause-

ExecStatus attribute. This operation takes a single input

parameter, called newStatus, which defines the new

value for the mpmPolClauseExecStatus attribute. Valid

values are defined by the MPMPolicyExecStatus

enumeration.

Table 25. Operations of the MPMPolicyClause Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 76

8.8.4.1 MPMAssertionClause Class Definition

An assertion is a predicate (i.e., a Boolean-valued function), connected to a point in a program,

that should evaluate to true at that point in the program’s execution. An MPMAssertionClause may

be used by different MPMPolicyStatements.

 An MPMPolicyStatement MAY contain zero or more MPMAssertionClauses.

 An MPMAssertionClause MAY be used with zero or more other

MPMPolicyClauses.

Figure 16 shows the MPMAssertionClause class.

Table 26 defines the attributes for this class.

Attribute Name Description

mpmAssertClause-

Response :

Boolean[1..1]

This is a mandatory Boolean attribute that provides a Boolean

response for this clause. This enables this MPMAssertionClause to

be combined with other subclasses of an MPMPolicyClause and/or

an MPMPolicyStatement that provide a Boolean value that defines

the status as to their correctness and/or evaluation state. This

enables this object to be used to construct more complex

MPMPolicyClauses and MPMPolicyStatements.

mpmAssertClauseTy

pe :

MPMAssertionState

mentType[1..1]

This is a mandatory enumerated non-negative integer attribute that

defines the composition of this particular MPMAssertionClause

object. The allowable values of this enumeration are defined by the

MPMAssertionStatementType enumeration.

Table 26. Attributes of the MPMAssertionClause Class

Table 27 defines the operations for this class.

Operation Name Description

getMPMAssertClause-

Response() : Boolean[1..1]

This operation returns the current value of the

mpmAssertClauseResponse attribute. This operation

takes no input parameters.

 If the mpmAssertClauseResponse attribute

does not have a value, then this operation

MUST return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 77

setMPMAssertClause-

Response(in newValue :

Boolean[1..1])

This operation sets the value of the

mpmAssertClause-

Response attribute. This operation takes a single

input parameter, called newValue, which defines the

new value for the mpmAssertClauseResponse

attribute.

getMPMAssertClauseType() :

MPMAssertionStatementType[1..1]

This operation returns the current value of the

mpmAssertClauseType attribute. This operation

takes no input parameters.

 If the mpmAssertClauseType attribute does

not have a value, then this operation MUST

return an error.

setMPMAssertClauseType(in

newValue :

MPMAssertionStatementType[1..1])

This operation sets the value of the

mpmAssertClauseType attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for the

mpmAssertClauseType attribute.

Table 27. Operations of the MPMAssertionClause Class

8.8.4.2 MPMBooleanClause Class Definition

A Boolean clause has the canonical form of a {variable, operator, value} 3-tuple, which evaluates

to either true or false. Boolean clauses may be joined together using logical connectives (e.g.,

AND and OR). A Boolean clause may also be negated. A Boolean clause may be made up of a

combination of the Boolean constants true or false, along with Boolean-typed variables, Boolean-

valued operators, and Boolean-valued functions.

 An MPMPolicyStatement MAY contain zero or more MPMBooleanClauses.

Figure 16 shows the MPMBooleanClause class.

Table 28 defines the attributes for this class.

Attribute Name Description

mpmBoolClauseBindValue

: Integer[1..1]

This is a mandatory array of positive integers that defines the

order in which constituent terms bind to this

MPMBooleanClause. For example, the Boolean expression

 "((A AND B) OR (C AND NOT (D OR E)))"

has the following binding order: terms A and B have a bind

value of 1; term C has a binding value of 2, and terms D and E

have a binding value of 3.

 All values in this attribute MUST be greater than 0.

https://en.wikipedia.org/wiki/Boolean_data_type
https://en.wikipedia.org/wiki/Boolean-valued_function

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 78

mpmBoolClauseIsCNF :

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this MPMBooleanClause is in

Conjunctive Normal Form. Otherwise, it is in Disjunctive

Normal Form.

mpmBoolClauseIsNegated

: Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this (entire) MPMBooleanClause is

negated.

Table 28. Attributes of the MPMBooleanClause Class

Table 29 defines the operations for this class.

Operation Name Description

getMPMBoolClauseBind-

Value() : Integer[1..1]

This operation returns the current value of the

mpmBoolStmtBindValue attribute, which is an array of

positive integers. This operation takes no input

parameters.

 If the mpmBoolStmtBindValue attribute does not

have a value, then this operation MUST return an

error.

setMPMBoolClauseBind-

Value(in newValue :

Integer[1..1])

This operation sets the value of the

mpmBoolClauseBindValue attribute. This operation

takes a single input parameter, called newValue, which

defines the new value(s) for the

mpmBoolClauseBindValue attribute.

The newValue is an array of non-zero positive integers.

 The value of the mpmBoolClauseBindValue

attribute MUST be a positive (non-zero) integer.

getMPMBoolClauseIsCNF() :

Boolean[1..1]

This operation returns the current value of the

mpmBoolClauseIsCNF attribute. This operation takes no

input parameters.

 If the mpmBoolClauseIsCNF attribute does not

have a value, then this operation MUST return an

error.

setMPMBoolClauseBind-

Value(in newValue :

Boolean[1..1])

This operation sets the value of the

mpmBoolClauseIsCNF attribute. This operation takes a

single input parameter, called newValue, which defines

the new value for the mpmBoolClauseIsCNF attribute.

 The value of the mpmBoolClauseIsCNF attribute

MUST be a Boolean value.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 79

getMPMBoolClauseIsNegated()

: Boolean[1..1]

This operation returns the current value of the

mpmBoolClauseIsNegated attribute. This operation takes

no input parameters.

 If the mpmBoolClauseIsNegated attribute does not

have a value, then this operation MUST return an

error.

setMPMBoolClauseIsNegated

(in newValue :

Boolean[1..1])

This operation sets the value of the

mpmBoolClauseIsNegated attribute. This operation takes

a single input parameter, called newValue, which defines

the new value for the mpmBoolClauseIsNegated

attribute.

 The value of the mpmBoolClauseIsNegated

attribute MUST be a Boolean value.

Table 29. Operations of the MPMBooleanClause Class

8.8.4.3 MPMLogicClause Class Definition

An MPMLogicClause is an abstract class that is the superclass for different types of clauses that

are used in declarative policies. This type of clause is limited to MPMAssertionStatements,

MPMTheorems, and MPMAxioms.

 An MPMAssertionStatement MAY contain zero or more MPMLogicClauses.

 An MPMTheorem MAY contain zero or more MPMLogicClauses.

 An MPMAxiom MAY contain zero or more MPMLogicClauses.

Figure 16 shows the MPMLogicClause class and its subclasses.

Table 30 defines the attributes for this class.

Attribute Name Description

mpmLogicClauseType :

MPMFormalLogicType[1..1]

This is a mandatory enumerated non-zero integer attribute

that defines the formal logic system that this particular

MPMLogicClause uses. Allowed values are defined by the

MPMFormalLogicType enumeration.

Table 30. Attributes of the MPMLogicClause Class

Table 31 defines the operations for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 80

Operation Name Description

getMPMogicClauseType() :

MPMFormalLogicType[1..1]

This operation returns the current value of the

mpmLogicClauseType attribute. This operation takes a

single input parameter, called newType, which defines

the new value for the mpmLogicClauseType attribute.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMogicClauseType(in

newType :

MPMFormalLogicType[1..1]

This operation sets the value of the

mpmLogicClauseType attribute. This operation takes no

input parameters.

Table 31. Operations of the MPMLogicClause Class

8.8.4.3.1 MPMPremiseClause Class Definition

An MPMPremiseClause is a declarative clause that is intended to justify a conclusion (represented

by an MPMConclusionClause; see section 8.8.4.3.2).

Figure 16 shows the MPMPremiseClause class and its subclasses.

Table 32 defines the attributes for this class.

Attribute Name Description

mpmPremiseIsTrue

: Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is

TRUE, then this MPMPremiseClause has been proven TRUE.

Table 32. Attributes of the MPMPremiseClause Class

Table 33 defines the operations for this class.

Operation Name Description

getMPMPremiseIsTrue() :

Boolean[1..1]

This operation returns the current value of the

mpmPremiseIsTrue attribute. This operation takes no

input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPremiseIsTrue (in

newValue : Boolean[1..1])

This operation sets the value of the mpmPremiseIsTrue

attribute. This operation takes a single input parameter,

called newValue, which defines the new value for the

mpmPremiseIsTrue attribute.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 81

Table 33. Operations of the MPMPremiseClause Class

This class participates in a single association, called MPMConclusionDependsOn. This is

described in section 8.8.4.3.2.

8.8.4.3.2 MPMConclusionClause Class Definition

An MPMConclusionClause is a declarative clause that is entailed (i.e., logically proves to be true)

from its set of associated MPMPremiseClauses.

Figure 16 shows the MPMConclusionClause class and its subclasses.

Table 34 defines the attributes for this class.

Attribute Name Description

mpmConclusionIs-

True : Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is

TRUE, then this MPMConclusionClause has been proven TRUE.

Table 34. Attributes of the MPMConclusionClause Class

Table 35 defines the operations for this class.

Operation Name Description

getMPMConclusionIsTrue() :

Boolean[1..1]

This operation returns the current value of the

mpmConclusionIsTrue attribute. This operation takes no

input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMConclusionIsTrue(in

newValue : Boolean[1..1])

This operation sets the value of the

mpmConclusionIsTrue attribute. This operation takes a

single input parameter, called newValue, which defines

the new value for the mpmConclusionIsTrue attribute.

Table 35. Operations of the MPMConclusionClause Class

This class defines a single relationship, called MPMConclusionDepends on, as shown in Figure

16.

The MPMConclusionDependsOn association is an optional association, and defines the set of

MPMPremiseClause objects that are attached to this particular MPMConclusionClause object. The

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 82

semantics of this association are defined by the MPMConclusionDependsOnDetail association

class.

An MPMConclusionClause requires at least two MPMPremiseClause objects. In addition, all

associated MPMPremiseClause objects must evaluate to TRUE in order for this particular

MPMConclusionClause to be TRUE.

 An MPMConclusionClause object MUST be associated with two or more

MPMPremiseClause objects.

 An MPMConclusionClause object MUST NOT be evaluated as TRUE unless

all of its associated MPMPremiseClause objects are also TRUE.

The multiplicity of this association is 0..1 - 2..n. This means that it is an optional association (i.e.,

the “0” part of the 0..1 cardinality). If this association is instantiated (i.e., the “1” part of the 0..1

cardinality), then two or more MPMPremiseClause objects are associated with this particular

MPMConclusionClause object. Specifically, this means that the MPMConclusionClause depends

on the two or more MPMPremiseClause objects. The 2..* cardinality prescribes a minimum

number (2) of MPMPremiseClause objects to be associated with this particular

MPMConclusionClause object. The semantics of this association are defined by the

MPMConclusionDependsOnDetail association class. This enables the management system to

control which set of concrete subclasses of MPMPremiseClause objects can be associated with

which types of MPMConclusionClause objects.

The MPMConclusionDependsOnDetail is a concrete association class, and defines the semantics

of the MPMConclusionDependsOn association. The attributes and relationships of this class can

be used to define which MPMPremiseClause objects can be associated with which particular set

of MPMConclusionClause objects. These semantics can be further enhanced by using the Policy

Pattern to define policy rules that constrain which part objects (i.e., MPMPremiseClause) are

attached to which MPMConclusionClause object. Note that MCMPolicyStructure is an abstract

class that is the superclass of imperative, declarative, and intent policy rules.

8.8.5 MPMPolicyComponentStructure Subclasses: MPMPolicyComponentDecorators

The Decorator Pattern [6] is a design pattern that allows behavior to dynamically be added to an

object, without affecting the behavior of other objects from the same class. More specifically, this

pattern enables all or part of one object to wrap another object. In effect, this means that the

decorated object may intercept a call to the object it is wrapping, and insert attributes or execute

methods before and/or after the wrapped object executes.

Hence, the decorator pattern provides a flexible alternative to subclassing for extending

functionality where different behaviors are required (e.g., dependent on context). In addition,

subclassing statically defines the characteristics and behavior of an object at compile time, whereas

the decorator pattern can change the characteristics and behavior of an object at run time.

Figure 17 shows the MPMPolicyComponentDecorator class and its subclasses and relationships.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 83

8.8.5.1 MPMPolicyComponentDecorator Class Definition

This is a mandatory class, and is used to implement the decorator pattern. This means that any

concrete subclass of MPMPolicyComponentDecorator can wrap any concrete subclass of

MPMPolicyStatement and/or MPMPolicyClause.

Figure 17 shows the MPMPolicyComponentDecorator class and its subclasses.

Figure 17. MPMPolicyComponentDecorator Subclasses

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 84

Figure 18 shows the attributes and operations for the MPMPolicyComponentDecorator class.

Table 36 defines the attributes for this class.

Attribute Name Description

mpmPolCompDecConstraint :

MPMPolCompDecConstraint[1..1]

This is a mandatory non-negative enumerated integer

attribute that defines the language used, if any, that

this MPMPolicyComponentDecorator subclass uses

to constrain object that it is wrapping.

Valid values are defined by the

MPMPolCompDecConstraint enumeration.

 A default value of 2 (NONE) MAY be defined.

mpmPolCompDecWrap :

MPMPolCompDec-Wrap[1..1]

This is an optional attribute that defines if this

decorated object should be wrapped before and/or

after the wrapped object is executed. Valid values are

defined by the MPMPolCompDecWrap enumeration

Table 36. Attributes of the MPMPolicyComponentDecorator Class

Table 37 defines the operations for this class.

Operation Name Description

getMPMPolCompDecConstraint()

:

MPMPolCompDecConstraint[1..1]

This operation returns the current value of the

mpmPolCompDecConstraint attribute. This operation

takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

Figure 18. MPMPolicyComponentDecorator Attributes and Operations

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 85

setMPMPolCompDecConstraint(in

newValue :

MPMPolCompDecConstraint[1..1])

This operation sets the value of the

mpmPolCompDecConstraint attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for the

mpmPolCompDecConstraint attribute.

getMPMPolCompDecWrap() :

MPMPolCompDecWrap[1..1]

This operation returns the current value of the

mpmPolCompDecValue attribute. This operation

takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolCompDecWrap(in

newValue :

MPMPolCompDecWrap[1..1])

This operation sets the value of the

mpmPolCompDecValue attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for the

mpmPolCompDecValue attribute.

Table 37. Operations of the MPMPolicyComponentDecorator Class

8.8.5.2 MPMPolicyTerm Hierarchy

This is a mandatory abstract class that is the parent of MPMPolicy objects that can be used to

define a standard way to test or set the value of a variable. It does this by defining a 3-tuple, in the

form {variable, operator, value}, where each element of the 3-tuple is defined by a concrete

subclass of the appropriate type (i.e., MPMPolicyVariable, MPMPolicyOperator, and

MPMPolicyValue classes, respectively).

For event and condition clauses and statements, this is typically written as:

 <variable> <operator> <value>.

For action clauses and statements, this is typically written as:

 <operator> <variable> <value>.

Note that generic test and set expressions do not have to only use objects that are subclasses of

MPMPolicyTerm. The utility of the subclasses of MPMPolicyTerm is in the ability of its

subclasses to define a generic framework for implementing get and set expressions directly from

the model. This enables a dynamic programming environment to construct get and set expressions

at runtime.

Figure 19 shows the MPMPolicyTerm class and its subclasses.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 86

Figure 19. MPMPolicyTerm Hierarchy

Table 38 defines the attributes for this class.

Attribute Name Description

mpmPolTermIsNegated

: Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this

attribute is TRUE, then this (entire) MPMTerm is negated.

Table 38. Attributes of the MPMPolicyTerm Class

Table 39 defines the operations for this class.

Operation Name Description

getMPMPolTermIsNegated()

: Boolean[1..1]

This operation returns the current value of the

mpmPolTermIsNegated attribute. This operation takes no

input parameters.

 If the mpmPolTermIsNegated attribute does not have

a value, then this operation MUST return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 87

setMPMPolTermIsNegated(in

newValue : Boolean[1..1])

This operation sets the value of the mpmPolTermIsNegated

attribute. This operation takes a single input parameter,

called newValue, which defines the new value for the

mpmPolTermIsNegated attribute.

Table 39. Operations of the MPMPolicyTerm Class

8.8.5.2.1 MPMPolicyVariable Class Definition

This is a mandatory concrete class that defines information that forms a part of an

MPMPolicyClause or MPMPolicyStatement. It specifies a concept or attribute that represents a

variable, which should be compared to a value, using a particular type of operator. Since this is a

subclass of the MPMPolicyComponentDecorator class, its value may be able to be changed

dynamically at runtime using the decorator pattern.

 The value of an MPMPolicyVariable class MAY be able to be changed

dynamically at runtime using the decorator pattern.

The value of an MPMPolicyVariable object is typically compared to the value of an

MPMPolicyValue object using the type of operator defined in a MPMPolicyOperator object.

However, other objects may be used instead of the MPMPolicyOperator and MPMPolicyValue

objects, and other operators may be defined in addition to those defined in the MPMPolicyOperator

class.

MPMPolicyVariables are used to abstract the representation of an MPMPolicyClause (or

MPMPolicyStatement) from its implementation. Some MPMPolicyVariable objects must

therefore be restricted in the values and/or the data type that they may be assigned. For example,

port numbers cannot be negative, and they cannot be floating-point numbers. These and other

constraints may be defined in two different ways:

1. use MPMPolicyComponentDecorator attributes to constrain just that individual object

2. use the MPMPolicyClauseHasDecoratorDetail association class attributes to constrain the

relationship between the concrete subclass of the MPMPolicyClause (or

MPMPolicyStatement) and the concrete subclass of the MPMPolicyVariable class

Figure 19 shows the MPMPolicyVariable class and its subclasses.

Table 40 defines the attributes for this class.

Attribute Name Description

mpmPolVariableName

: String[1..1]

This is a mandatory string attribute that contains the name of this

MPMPolicyVariable.

Table 40. Attributes of the MPMPolicyVariable Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 88

Table 41 defines the operations for this class.

Operation Name Description

getMPMPolVariableName()

: String[1..1]

This operation returns the current value of the

mpmPolVariableName attribute. This operation takes no

input parameters.

 If the mpmPolVariableName attribute does not have a

value, then this operation MUST return an error.

setMPMPolVariableName(in

newName : String[1..1])

This operation sets the value of the mpmPolVariableName

attribute. This operation takes a single input parameter,

called newName, which defines the new value for the

mpmPolVariableName attribute.

 The value of the mpmPolVariableName attribute

MUST NOT be empty or NULL.

Table 41. Operations of the MPMPolicyVariable Class

8.8.5.2.2 MPMPolicyOperator Class Definition

This is a mandatory concrete class for modeling different types of operators that are used in an

MPMPolicyClause or MPMPolicyStatement.

The restriction of the type of operator used in an MPMPolicyClause or MPMPolicyStatement

constrains the semantics that can be expressed in that MPMPolicyClause or MPMPolicyStatement.

It is typically, but does not have to be, used with MPMPolicyVariable and MPMPolicyValue

objects to form an MPMPolicyClause or MPMPolicyStatement.

The value of an MPMPolicyVariable object is typically compared to the value of an

MPMPolicyValue object using the type of operator defined in a MPMPolicyOperator object.

However, other objects may be used instead of the MPMPolicyOperator and MPMPolicyValue

objects, and other operators may be defined in addition to those defined in the MPMPolicyOperator

class.

Since this is a subclass of the MPMPolicyComponentDecorator class, its value may be able to be

changed dynamically at runtime using the decorator pattern.

 The value of an MPMPolicyOperator class MAY be able to be changed

dynamically at runtime using the decorator pattern.

Figure 19 shows the MPMPolicyOperator class and its subclasses.

Table 42 defines the attributes for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 89

Attribute Name Description

mpmPolOperator :

MPMPolOperatorType[1..1]

This is a mandatory enumerated non-negative integer

attribute. The allowable values of this enumeration are

defined by the MPMPolOperatorType enumeration.

Table 42. Attributes of the MPMPolicyOperator Class

Table 43 defines the operations for this class.

Operation Name Description

getMPMPolOperator() :

MPMPolOperatorType[1..1]

This operation returns the current value of the

mpmPolOperator attribute. This operation takes no input

parameters.

 If the mpmPolOperator attribute does not have a

value, then this operation MUST return an error.

setMPMPolOperator(in

newValue :

MPMPolOperatorType[1..1])

This operation sets the value of the mpmPolOperator

attribute. This operation takes a single input parameter,

called newValue, which defines the new value for the

mpmPolOperator attribute.

Table 43. Operations of the MPMPolicyOperator Class

8.8.5.2.3 MPMPolicyValue Class Definition

The MPMPolicyValue class is a mandatory concrete class for modeling different types of values

and constants that occur in an MPMPolicyClause or an MPMPolicyStatement.

MPMPolicyValues objects are used to abstract the representation of an MPMPolicyClause or an

MPMPolicyStatement from its implementation. Therefore, the design of the MPMPolicyValue

object depends on two important factors. First, just as with MPMPolicyVariable objects, some

types of MPMPolicyValue objects are restricted in the values and/or the data type that they may

be assigned. Second, there is a high likelihood that specific applications will need to use their own

variables that have specific meaning to a particular application.

In general, there are two ways to apply constraints to an object instance of an MPMPolicyValue

object:

1. use MPMPolicyClauseComponentDecorator attributes to constrain just that individual

object

2. use the MPMPolicyClauseHasDecoratorDetail association class attributes to constrain the

relationship between the concrete subclass of the MPMPolicyClause (or

MPMPolicyStatement) and the concrete subclass of the MPMPolicyVariable class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 90

The value of an MPPolicyValue object is typically compared to the value of an

MPMPolicyVariable object using the type of operator defined in an MPMPolicyOperator object.

However, other objects may be used instead of an MPMPolicyVariable object, and other operators

may be defined in addition to those defined in the MPMPolicyOperator class.

Since this is a subclass of the MPMPolicyComponentDecorator class, its value may be able to be

changed dynamically at runtime using the decorator pattern.

 The value of an MPMPolicyValue class MAY be able to be changed

dynamically at runtime using the decorator pattern.

Figure 19 shows the MPMPolicyValue class and its subclasses.

Table 44 defines the attributes for this class.

Attribute Name Description

mpmPolValueContent:

String[1..1]

This is a mandatory string attribute that defines the value of this

MPMPolicyValue object. Its datatype is defined by the

mpmPolValueEncoding class attribute

mpmPolValueEncoding:

MPMPolValueType[1..1]

This is a mandatory enumerated non-negative integer attribute

that defines the datatype of the mpmPolValueContent class

attribute. The allowable values of this enumeration are defined

by the MPMPolValueType enumeration.

Table 44. Attributes of the MPMPolicyValue Class

Table 45 defines the operations for this class.

Operation Name Description

getMPMPolValueContent() :

String[1..1]

This operation returns the current value of the

mpmPolValueContent attribute. This operation takes no

input parameters.

 If the mpmPolValueContent attribute does not have a

value, then this operation MUST return an error.

setMPMPolValueContent(in

newValue : String[1..1])

This operation sets the value of the mpmPolValueContent

attribute. This operation takes a single input parameter,

called newValue, which defines the new value for the

mpmPolValueContent attribute.

 The value of the mpmPolValueContent attribute

MUST NOT be empty.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 91

getMPMPolValueEncoding()

: MPMPol-

ValueType [1..1]

This operation returns the current value of the

mpmPolValueContent attribute. This operation takes no

input parameters.

 If the mpmPolValueContent attribute does not have a

value, then this operation MUST return an error.

setMPMPolValueContent(in

newValue : MPMPolValue-

Type [1..1])

This operation sets the value of the mpmPolValueContent

attribute. This operation takes a single input parameter,

called newValue, which defines the new value for the

mpmPolValueContent attribute.

Table 45. Operations of the MPMPolicyValue Class

8.8.5.3 MPMECAObject Hierarchy

The MPMECAObject abstract class is used to define three concrete subclasses, one each to

represent the concepts of reusable events, conditions, and actions. They are called

MPMPolicyEvent, MPMPolicyCondition, and MPMPolicyAction, respectively.

Figure 20 shows the MPMECAObject class and its subclasses.

Figure 20. MPMECAObject Class and its Subclasses

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 92

MPMECAObjects provide two different ways to construct MPMPolicyClauses. The first is for the

MPMECAObject to be used as either an MPMPolicyVariable or an MPM PolicyValue, and the

second is for the MPMECAObject to contain the entire clause text for an MPMPolicyVariable or

an MPMPolicyValue. For example, suppose it is desired to define a policy condition clause with

the text “queueDepth > 10”. Two approaches could satisfy this as follows:

 Approach #1 (canonical form):

 MPMPolicyCondition.mpmPolicyConditionData contains the text 'queueDepth'

 MPMPolicyOperator.mpmPolOpType is set to '1' (greater than)

 MPMPolicyValue.mpmPolValContent is set to '10'

 Approach #2 (MPMECAComponent represents the entire clause):

 MPMPolicyCondition.mpmPolicyConditionData contains the text 'queueDepth > 10'

In both of the above approaches, MPMPolicyCondition.mpmPolicyConditionEncoding is set to

‘1’ (string).

The main advantage of MPMECAObjects is that they provide a machine-processable mechanism

for defining MPMPolilcyClauses at runtime.

8.8.5.3.1 MPMECAObject

This is a mandatory abstract class that defines three concrete subclasses, one each to represent the

concepts of reusable events, conditions, and actions. They are called MPMPolicyEvent,

MPMPolicyCondition, and MPMPolicyAction, respectively.

Figure 20 shows the MPMECAObject class and its subclasses.

Table 46 defines the attributes for this class.

Attribute Name Description

mpmIsPolicyTerm :

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of this attribute is

TRUE, then this MPMECAObject is used as the value of an

MPMPolicyTerm to construct an MPMPolicyClause (this is

approach #1 in section 8.8.5.3 above). If the value of this attribute is

FALSE, then this MPMECAObject contains the text of the entire

corresponding MPMPolicyClause (this is approach #2 in section

8.8.5.3 above).

Table 46. Attributes of the MPMECAObject Class

Table 47 defines the operations for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 93

Operation Name Description

getMPMIsPolicyTerm()

: Boolean[1..1]

This operation returns the current value of the mpmIsPolicyTerm

attribute. This operation takes no input parameters.

 If the mpmIsPolicyTerm attribute does not have a value,

then this operation MUST return an error.

getMPMIsPolicyTerm

(in newValue :

Boolean[1..1])

This operation sets the value of the mpmIsPolicyTerm attribute.

This operation takes a single input parameter, called newValue,

which defines the new value for the mpmIsPolicyTerm attribute.

Table 47. Operations of the MPMECAObject Class

8.8.5.3.2 MPMPolicyEvent Class Definition

This is a mandatory concrete class that represents the concept of an Event that is applicable to a

policy management system. Such an Event is defined as anything of importance to the management

system (e.g., a change in the system being managed and/or its environment) occuring at a specific

point in time.

It should be noted that instances of this class are not themselves events. Rather, instances of this

class appear in MPMPolicyClause objects to describe what types of events the MPMPolicy is

triggered by and/or uses.

MPMPolicyEvent objects can be used as part of an MPMPolicyStatement or an MPMPolicyClause

object, since they are subclasses of the MPMPolicyComponentDecorator class; this means that

they can wrap any concrete subclass of MPMPolicyComponentStructure, such as the concrete

subclasses of MPMPolicyStatement and MPMPolicyClause.

Information from events that trigger MPMPolicies need to be made available for use in condition

and action clauses, as well as in appropriate decorator objects. Application-specific subclasses

(such as one for using YANG notifications as policy events) need to define how the information

from the environment or event is used to trigger the evaluation of the MPMPolicyCondition

subclass.

 If the MPMPolicyEvent class is extended by subclassing, then that subclass

SHOULD define how the set of events represented by the MPMPolicyEvent

subclass is triggered.

Figure 20 shows the MPMPolicyEvent class and its subclasses.

Table 48 defines the attributes for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 94

Attribute Name Description

mpmPolicyEventData :

String[1..*]

This is a mandatory attribute that defines an array of

strings. Each string in the array represents an attribute

name and value of an Event object. The format of each

string is defined as a {name:value} tuple. The 'name'

part is the name of the MPMPolicyEvent attribute, and

the 'value' part is the value of that attribute. For example,

if the value of this attribute is:

 {(‘startTime’:‘08:00’), (‘endTime’:‘17:00’),

 (‘date’:‘2016-05-11’), (‘timeZone’:‘-08:00’)}

then this attribute contains four properties, called

startTime, endTime, date, and timeZone, whose values

are 0800, 1700, May 11 2016, and Pacific Standard

Time, respectively.

This attribute works with another class attribute, called

mpmPolicyEventEncoding, which defines how to

interpret this attribute. These two attributes form a tuple,

and together enable a machine to understand the syntax

and value of the data carried by the object instance of

this class.

mpmPolicyEvent-Encoding :

PolValueType[1..1]

This is a mandatory non-zero enumerated integer

attribute, and defines how to interpret the

mpmPolicyEventData class attribute. These two

attributes form a tuple, and together enable a machine to

understand the syntax and value of the data carried by

the object instance of this class. Allowed values are

defined in the MPMPolValueType enumeration.

mpmPolicyEventIsPreProcessed

:

Boolean[1..1]

This is an optional Boolean attribute. If the value of this

attribute is TRUE, then this MPMPolicyEvent has been

pre-processed by an external entity, such as an Event

Service Bus, before it was received by the Policy

Management System.

mpmPolicyEventIsSynthetic :

Boolean[1..1]

This is an optional Boolean attribute. If the value of this

attribute is TRUE, then this MPMPolicyEvent has been

produced by the Policy Management System. If the

value of this attribute is FALSE, then this

MPMPolicyEvent has been produced by an entity in the

system being managed.

mpmPolicyEvent-Topic :

String[1..*]

This is a mandatory array of string attributes, and

contains the subject(s) that describe the nature of this

PolicyEvent.

Table 48. Attributes of the MPMPolicyEvent Class

Table 49 defines the operations for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 95

Operation Name Description

getMPMPolicyEventData() :

String[1..*]

This operation returns the current value of the

mpmPolicyEventData attribute, which is an array

of one or more strings. This operation takes no

input parameters.

 If the mpmPolicyEventData attribute does

not have a value, then this operation

SHOULD return a NULL string.

setMPMPolicyEventData(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicyEventData attribute. This operation

takes a single input parameter, called newValue,

which defines an array of one or more strings for

the mpmPolicyEventData attribute.

 The value of the mpmPolicyEventData

attribute MUST NOT be an empty string.

getMPMPolicyEvent-Encoding() :

MPMPolValueType[1..1]

This operation returns the current value of the

mpmPolicyEvent-Encoding attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then

this operation MUST return an error.

setMPMPolicyEvent-Encoding(in

newValue : MPMPolValue-Type[1..1])

This operation sets the value of the

mpmPolicyEventEncoding attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute.

getMPMPolicyEventIsPreProcessed()

:

Boolean[1..1]

This operation returns the current value of the

mpmPolicyEventIsPreProcessed attribute, which is

a Boolean attribute. This operation takes no input

parameters.

 If the mpmPolicyEventIsPreProcessed

attribute does not have a value, then this

operation MUST return an error.

setMPMPolicyEventIsPreProcessed(in

newValue :

Boolean[1..1])

This operation sets the value of the

mpmPolicyEventIsPreProcessed attribute. This

operation takes a single input parameter, called

newValue, which defines the new value of this

attribute.

getMPMPolicyEventIsSynthetic() :

Boolean[1..1]

This operation returns the current value of the

mpmPolicyEventIsSynthetic attribute, which is a

Boolean attribute. This operation takes no input

parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 96

 If the mpmPolicyEventIsSynthetic attribute

does not have a value, then this operation

MUST return an error.

setMPMPolicyEventIsSynthetic(in

newValue :

Boolean[1..1])

This operation sets the value of the

mpmPolicyEventIsSynthetic attribute. This

operation takes a single input parameter, called

newValue, which defines the new value of this

attribute.

getMPMPolicyEvent-Topic() :

String[1..*]

This operation returns the current value of the

mpmPolicyEvent-Topic attribute, which is an

array of one or more strings. This operation takes

no input parameters.

 If the mpmPolicyEventData attribute does

not have a value, then this operation MUST

return an error.

setMPMPolicyEvent-Topic(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicyEventTopic attribute. This operation

takes a single input parameter, called newValue,

which defines an array of one or more strings for

the mpmPolicyEventTopic attribute.

 The value of the mpmPolicyEventTopic

attribute MUST NOT be an empty string.

Table 49. Operations of the MPMPolicyEvent Class

8.8.5.3.3 MPMPolicyCondition Class Definition

This is a mandatory concrete class that represents the concept of a Condition that will determine

whether or not the set of Actions in this MPMPolicy should be executed or not.

MPMPolicyCondition objects can be used as part of an MPMPolicyStatement or an

MPMPolicyClause object, since they are subclasses of the MPMPolicyComponentDecorator class;

this means that they can wrap any concrete subclass of MPMPolicyComponentStructure, such as

the concrete subclasses of MPMPolicyStatement and MPMPolicyClause.

Application-specific subclasses of this class (such as one for processing YANG) need to define

how the information from the environment is used by this subclass.

 If the MPMPolicyCondition class is extended by subclassing, then it SHOULD

define how it uses information from the managed environment.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 97

Figure 20 shows the MPMPolicyCondition class and its subclasses.

Table 50 defines the attributes for this class.

Attribute Name Description

mpmPolicyConditionData :

String[1..*]

This is a mandatory attribute that defines an array of

strings. Each string in the array represents an attribute

name and value of an MPMPolicyCondition object. The

format of each string is defined as a {name:value} tuple.

The 'name' part is the name of the MPMPolicyCondition

attribute, and the 'value' part is the value of that attribute.

For example, if the value of this attribute is:

 {(‘sourcePort’:‘8080’), (‘destPort’:‘8080’)}

then this attribute contains two properties, called

sourcePort and destPort, whose values are both “8080”.

This attribute works with another class attribute, called

mpmPolicyConditionEncoding, which defines how to

interpret this attribute. These two attributes form a tuple,

and together enable a machine to understand the syntax

and value of the data carried by the object instance of this

class.

mpmPolicyConditionEncoding

:

PolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute,

and defines how to interpret the mpmPolicyConditionData

class attribute. These two attributes form a tuple, and

together enable a machine to understand the syntax and

value of the data carried by the object instance of this

class. Allowed values are defined in the

MPMPolValueType enumeration.

Table 50. Attributes of the MPMPolicyCondition Class

Table 51 defines the operations for this class.

Operation Name Description

getMPMPolicyConditionData() :

String[1..*]

This operation returns the current value of the

mpmPolicyConditionData attribute. This operation

takes no input parameters.

 If the mpmPolicyConditionData attribute

does not have a value, then this operation

MUST return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 98

setMPMPolicyConditionData(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicyConditionData attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for the

mpmPolicyConditionData attribute.

 The value of the mpmPolicyConditionData

attribute MUST NOT be an empty string.

getMPMPolicyConditionEncoding()

: MPMPolValueType[1..1]

This operation returns the current value of the

mpmPolicyConditionEncoding attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolicyConditionEncoding(in

newValue :

MPMPolValueType[1..1])

This operation sets the value of the

mpmPolicyConditionEncoding attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute.

Table 51. Operations of the MPMPolicyCondition Class

8.8.5.3.4 MPMPolicyAction Class Definition

This is a mandatory concrete class that represents the concept of an Action, which is a part of an

MPMECAPolicy. The Action may be executed when both the event and the condition clauses of

its owning MPMECAPolicy evaluate to true.

MPMPolicyAction objects can be used as part of an MPMPolicyStatement or an

MPMPolicyClause object, since they are subclasses of the MPMPolicyComponentDecorator class;

this means that they can wrap any concrete subclass of MPMPolicyComponentStructure, such as

the concrete subclasses of MPMPolicyStatement and MPMPolicyClause.

Application-specific subclasses of this class (such as one for processing YANG) need to define

how the information from the environment is used by this subclass.

 If the MPMPolicyAction class is extended by subclassing, then it SHOULD

define how it uses information from the managed environment.

The execution of this action is determined by its MPMECAPolicy container, and any applicable

MPMPolicyMetadata objects that are attached to that MPMECAPolicy container.

MPMPolicyAction objects can be used in three different ways:

• as part of an MPMPolicyClause (e.g., var = MPMPolicyAction.mpmPolicyActionData)

• as a standalone MPMPolicyClause (e.g., the mpmPolicyActionData attribute contains text

that defines the entire action clause, and the mpmPolicyActionEncoding attribute defines

the datatype of the mpmPolicyActionData attribute)

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 99

• to invoke one or more MPMPolicyActions in a different MPMECAPolicy

In the third case, note that this is NOT invoking a different MPMECAPolicy, but rather, invoking

an MPMPolicyAction that is contained in a different MPMECAPolicy.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 100

The problem with an MPMECAPolicy calling MPMECAPolicy is best illustrated with the

following example:

• MPMECAPolicy A is currently executing

• MPMPolicyAction A1 executes successfully

• MPMPolicyAction A2 calls MPMECAPolicy B

• MPMPolicyAction A3 is either waiting to execute, or is executing

When MPMECAPolicy B is called, it presumably should execute under the scope of control of

MPMECAPolicy A (since Policy A has not finished executing). However, calling another

MPMECAPolicy means that now, the event clause of Policy B should be activated. It is very

difficult to ensure that the next thing the Policy Engine does is determine if the event clause of B

is satisfied or not.

Furthermore, what happens to MPMPolicyAction A3? Is MPMECAPolicy B supposed to finish

execution before MPMPolicyAction A3? This requires additional logic (priorities do not work

here!), which requires communication between the policy engine and both MPMECAPolicy A and

MPMECAPolicy B.

Even if these problems are solved, what happens if MPMPolicyAction A3 fails, and the mpmPol-

ExecFailStrategy has a value of 2 (i.e., if an action fails, then a rollback must be performed)? Does

MPMECAPolicy B also get rolled back?

Therefore, for this version of MPM, an MPMPolicyAction can only call another

MPMPolicyAction.

 An MPMPolicyAction MUST NOT call another MPMPolicy.

 An MPMPolicyAction MAY invoke one or more MPMPolicyActions in a

different MPMECAPolicy

Figure 20 shows the MPMPolicyAction class and its subclasses.

Table 52 defines the attributes for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 101

Attribute Name Description

mpmPolicyAction-Data :

String[1..*]

This is a mandatory attribute that defines an array of strings.

Each string in the array is a 2-tuple, consisting of a single

character defining how this attribute is used, and the value of an

attribute name of an MPMPolicyAction object. Since this

attribute could represent a term in an MPMPolicyClause (e.g.,

var = MPMPolicyAction.mpmPolicyActionData), a complete

MPMPolicyClause (e.g., the mpmPolicyActionData attribute

contains text that defines the entire action clause), or the name

of a MPMPolicyAction to invoke, each element in the string

array is prepended with one of the following strings:

 o 'v:' (or ‘variable:’), to denote a term in an

MPMPolicyClause

 o 'c:' (or 'clause:'), to denote an entire MPMPolicyClause

 o 'a:' (or 'action:'), to invoke a MPMPolicyAction in a

 different MPMPolicy

For example, if the value of this attribute is:

 {(‘t’:‘set destPort to 80’), (‘a’:‘call PortHandlingAction’)}

then this attribute contains two actions. The first is the action

portion of an MPMPolicyClause, and sets the variable destPort

to a value of 80. The second calls the MPMPolicyAction named

‘PortHandling-Action’.

This attribute works with another class attribute, called

mpmPolicyActionEncoding, which defines how to interpret this

attribute. These two attributes form a tuple, and together enable

a machine to understand the syntax and value of the data carried

by the object instance of this class.

mpmPolicyAction-

Encoding :

MPMPolValueType[1..1]

This is a mandatory non-zero enumerated integer attribute, and

defines how to interpret the mpmPolicyActionData class

attribute. These two attributes form a tuple, and together enable

a machine to understand the syntax and value of the data carried

by the object instance of this class. Allowed values are defined

in the MPMPolValueType enumeration.

Table 52. Attributes of the MPMPolicyAction Class

Table 53 defines the operations for this class.

Operation Name Description

getMPMPolicyAction-Data() :

String[1..*]

This operation returns the current value of the

mpmPolicyAction-Data attribute. This operation takes

no input parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 102

 If the mpmPolicyActionData attribute does not

have a value, then this operation MUST return an

error.

setMPMPolicyActionData(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicyActionData attribute. This operation takes a

single input parameter, called newValue, which defines

the new value for this attribute.

 The value of the mpmPolicyActionData attribute

MUST NOT be an empty string.

getMPMPolicyActionEncoding()

: MPMPolValueType[1..1]

This operation returns the current value of the

mpmPolicyActionEncoding attribute. This operation

takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolicyActionEncoding(in

newValue :

MPMPolValueType[1..1])

This operation sets the value of the

mpmPolicyActionEncoding attribute. This operation

takes a single input parameter, called newValue, which

defines the new value for this attribute.

Table 53. Operations of the MPMPolicyAction Class

8.8.5.4 MPMPolicyCollection

An MPMPolicyCollection is an optional concrete class that enables a collection (e.g., set, bag, or

other, more complex, collections of elements) of arbitrary objects to be defined and used as part

of an MPMPolicyClause.

One of the problems with ECA policy rules is when an enumeration occurs in the event and/or

condition clauses. For example, if a set of events is received, the policy system may need to wait

for patterns of events to emerge (e.g., any number of Events of type A, followed by either one

event of type B or two events of type Event C). Similarly, for conditions, testing the value of a set

of attributes may need to be performed. Both of these represent behavior similar to a set of if-then-

else statements or a switch statement in imperative programming languages.

It is typically not desirable for the policy system to represent each choice in such clauses as its

own policy clause (i.e., a 3-tuple), as this creates object explosion and poor performance.

Furthermore, in these cases, it is often required to have a set of complex logic to be executed,

where the logic varies according to the particular event or condition that was selected. It is much

too complex to represent this using separate objects, especially when the logic is application-

and/or vendor-specific. However, recall that one of the goals of this standard was to facilitate the

machine-driven construction of policies. Therefore, a solution to this problem is needed.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 103

Therefore, this standard defines the concept of a collection of entities, called an

MPMPolicyCollection. Conceptually, the items to be collected (e.g., events or conditions) are

aggregated in one or more MPMPolicyCollection objects of the appropriate type.

Another example is for an MPMPolicyCollection object to aggregate logic blocks (including

MPMDeclarativePolicies) to execute.

The computation(s) represented by an MPMPolicyCollection may be part of a larger

MPMPolicyClause, since MPMPolicyCollection is a subclass of

MPMPolicyComponentDecorator, and can be used to decorate an MPMPolicyClause.

 Figure 21 shows the attributes and operations of the MPMPolicyCollection class.

Table 54 defines the attributes for this class.

Figure 21. MPMPolicyCollection

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 104

Attribute Name Description

mpmPolCollection-Data :

String[1..*]

This is a mandatory attribute that defines an array of

strings. Each string in the array defines a domain-

specific identifier of an object that is collected by this

object instance.

This attribute works with another class attribute, called

mpmPolicyCollectionEncoding, which defines how to

interpret this attribute. These two attributes form a

tuple, and together enable a machine to understand the

syntax and value of the data carried by the object

instance of this class.

mpmPolCollection-Encoding :

MPMPolValueType[1..1]

This is a mandatory non-zero enumerated integer

attribute, and defines how to interpret the

mpmPolCollectionData class attribute. These two

attributes form a tuple, and together enable a machine

to understand the syntax and value of the data carried

by the object instance of this class. Allowed values are

defined in the MPMPolValueType enumeration.

mpmPolCollection-Function :

MPMPolCollectionFunction[1..1]

This is a mandatory non-zero enumerated integer

attribute, and defines how this collection is used (e.g., is

it a collection of objects for an event, or for logic

processing, or other functions). Allowed values are

defined in the MPMPolCollectionFunction

enumeration.

mpmPolCollectionIsOrdered :

Boolean[1..1]

This is a mandatory Boolean attribute. If the value of

this attribute is TRUE, then all elements in this instance

of this MPMPolicyCollection object are ordered.

mpmPolCollectionType :

MPMPolCollectionType[1..1]

This is a mandatory non-zero enumerated integer

attribute, and defines the type of collection that this

object instance is. Allowed values are defined in the

MPMPolCollectionType enumeration.

Table 54. Attributes of the MPMPolicyCollection Class

Table 55 defines the operations for this class.

Operation Name Description

getMPMPolCollectionData() :

String[1..*]

This operation returns the current value of the

mpmPolCollectionData attribute. This operation

takes no input parameters.

 If the mpmPolCollectionData attribute does

not have a value, then this operation MUST

return an error.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 105

setMPMPolCollectionData(in

newValue : String[1..*])

This operation sets the value of the

mpmPolCollectionData attribute. This operation

takes a single input parameter, called newValue,

which is an array of strings that defines the new value

for the mpmPolCollectionData attribute.

 The value of the mpmPolCollectionData

attribute MUST NOT be an empty string.

getMPMPolicyCollectionEncoding()

: MPMPolValueType[1..1]

This operation returns the current value of the

mpmPolicyCollectionEncoding attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolicyCollectionEncoding(in

newValue : MPMPol-

ValueType[1..1])

This operation sets the value of the

mpmPolicyCollectionEncoding attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute.

getMPMPolCollection-Function() :

MPMPol-CollectionFunction[1..1]

This operation returns the current value of the

mpmPolicyCollectionFunction attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolCollection-Function(in

newValue : MPMPolCollection-

Function [1..1])

This operation sets the value of the

mpmPolicyCollectionFunction attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute.

getMPMPolCollectionIsOrdered() :

Boolean[1..1]

This operation returns the current value of the

mpmPolicyCollectionIsOrdered attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolCollectionIsOrdered (in

newValue : Boolean[1..1])

This operation sets the value of the

mpmPolicyCollectionIsOrdered attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute.

getMPMPolCollectionType() :

MPMPolCollectionType [1..1]

This operation returns the current value of the

mpmPolicyCollectionType attribute. This operation

takes no input parameters.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 106

 If this attribute does not have a value, then this

operation MUST return an error.

setMPMPolCollectionType(in

newValue :

MPMPolCollectionType[1..1])

This operation sets the value of the

mpmPolicyCollectionType attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for this attribute.

Table 55. Operations of the MPMPolicyCollection Class

8.9 MPMPolicySource

This is an optional class that defines a set of MCMManagedEntity objects that authored, or are

otherwise responsible for, this MPMPolicy. Note that an MPMPolicySource does NOT evaluate

or execute MPMPolicies. Its primary use is for auditability and the implementation of deontic

and/or alethic logic.

It is recommended that an MPMPolicySource object is mapped to a role or set of roles (e.g., using

the role-object pattern). This enables role-based or policy-based access control to be used to restrict

which MCMManagedEntity objects can author a given policy.

 An MPMPolicySource object SHOULD be mapped to a subclass of

MCMPolicyRole.

Figure 22 shows the MPMPolicySource and MPMPolicyTarget classes.

The purpose of the MPMPolicySource object is to provide a mechanism for business logic to be

inserted into the model to manipulate the objects that serve as the authors or are responsible for

this MPMPolicy.

Figure 22. PolicySource and PolicyTarget

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 107

Table 56 defines the attributes for this class.

Attribute Name Description

mpmPolicy-SourceAuthor :

String[1..*]

This is an optional attribute that defines an array of

strings. Each string in the array is a 2-tuple, consisting of a

single character defining the type of object that contains

the Author, and the name of an MCMParty or

MCMPartyRole object class. The mapping of the first

character is defined as follow:

 ‘o’: MCMOrganization

 ‘p’: MCMPerson

 ‘r’: MCMPartyRole

For example, if this attribute contains the following

values:

 {(‘o’:‘CustomerSupport’), (‘r’:‘CSRole’)}

then the first 2-tuple identifies an MCMOrganization

named ‘CustomerSupport’, and the second identifies an

MCMPartyRole named ‘CSRole’.

 This attribute MUST NOT contain a prefix (i.e., a

character before the quote) of more than 1 character.

 This attribute MUST NOT contain a NULL or

empty string.

mpmPolicySourceGovernedBy

: String[1..*]

This is an optional attribute that defines an array of

strings. Each string in the array is a 2-tuple, consisting of a

single character defining the type of object that governs

this MPMPolicy, and the name of an MCMParty or

MCMPartyRole object class. The mapping of the first

character is defined as follow:

 ‘o’: MCMOrganization

 ‘p’: MCMPerson

 ‘r’: MCMPartyRole

For example, if this attribute contains the following

values:

 {(‘o’:‘CustomerSupport’), (‘r’:‘CSRole’)}

then the first 2-tuple identifies an MCMOrganization

named ‘CustomerSupport’, and the second identifies an

MCMPartyRole named ‘CSRole’.

 This attribute MUST NOT contain a prefix (i.e., a

character before the quote) of more than 1 character.

 This attribute MUST NOT contain a NULL or

empty string.

Table 56. Attributes of the MPMPolicySource Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 108

Table 57 defines the operations for this class.

Operation Name Description

getMPMPolicy-SourceAuthor() :

String[1..*]

This operation returns the current value of the

mpmPolicySource-Author attribute. This operation

takes no input parameters.

 If the mpmPolicySourceAuthor attribute does

not have a value, then this operation MUST

return an error.

 This attribute MUST be a two-tuple.

setMPMPolicy-SourceAuthor(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicySourceAuthor attribute. This operation

takes a single input parameter, called newValue,

which defines the new value for this attribute. The

newValue attribute is an array of 2-tuples.

 The value of the mpmPolicySourceAuthor

attribute MUST NOT be a NULL or empty

string.

getMPMPolicySourceGovernedBy()

: String[1..*]

This operation returns the current value of the

mpmPolicySourceGovernedBy attribute. This

operation takes no input parameters.

 If this attribute does not have a value, then this

operation MUST return an error.

 This attribute MUST be a two-tuple.

setMPMPolicySourceGovernedBy(in

newValue : String[1..*])

This operation sets the value of the

mpmPolicySourceGovernedBy attribute. This

operation takes a single input parameter, called

newValue, which defines the new value for this

attribute. The newValue attribute is an array of 2-

tuples.

 The value of the

mpmPolicySourceGovernedBy attribute

MUST NOT be an empty string.

Table 57. Operations of the MPMPolicySource Class

8.10 MPMPolicyTarget

This is a mandatory class that defines a set of MCMManagedEntity objects that an MPMPolicy is

applied to.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 109

An MCMManagedEntity object must satisfy two conditions in order to be defined as an

MPMPolicyTarget. First, the set of managed entities that are to be affected by the MPMPolicy

must all agree to play the role of an MPMPolicyTarget. In general, an MCMManagedEntity may

or may not be in a state that enables MPMPolicy objects to be applied to it to change its state;

hence, a negotiation process may need to occur to enable the MPMPolicyTarget to signal when it

is willing to have MPMPolicy objects applied to it. Second, an MPMPolicyTarget must be able to

process (directly or with the aid of a proxy) the action(s) of a set of MPMPolicy objects.

 If a proposed MPMPolicyTarget object is in a state that enables changes to be

made to it, and if it can process those changes, it MUST have its

mpmPolicyTargetEnabled Boolean attribute set to a value of TRUE.

It is recommended that an MPMPolicyTarget object is mapped to a role or set of roles (e.g., using

the role-object pattern). This enables role-based or policy-based access control to be used to restrict

which MCMManagedEntity objects can be affected by a given policy.

 An MPMPolicyTarget object SHOULD be mapped to a subclass of

MCMPolicyRole.

Figure 22 shows the MPMPolicySource and MPMPolicyTarget classes.

Table 58 defines the attributes for this class.

Attribute Name Description

mpmPolicyTargetAdminStatus

: MPMPolicyAdminStatus[1..1]

This is a mandatory enumerated non-negative integer

attribute that defines the current administrative status of

this particular MPMPolicyTarget object. The allowable

values of this enumeration are defined by the

MPMPolicyAdminStatus enumeration.

mpmPolicyTarget-RoleStatus :

MPMPolTargetRoleStatus[1..1]

This is a mandatory enumerated non-negative integer

attribute that defines the current readiness of this

particular MPMPolicyTarget object to take on the

PolicyTargetRole. The allowable values of this

enumeration are defined by the

MPMPolicyTargetRoleStatus enumeration.

Table 58. Attributes of the MPMPolicyTarget Class

Table 59 defines the operations for this class.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 110

Operation Name Description

getMPMPolicyTargetAdminStatus()

: MPMPolicyAdminStatus[1..1]

This operation returns the current administrative

status of this particular MPMPolicyTarget object,

which is defined by the MPMPolicyAdminStatus

enumeration. This operation takes no input

parameters.

 If the mpmPolicyTargetAdminStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolicyTargetAdminStatus(

in newStatus :

MPMPolicyAdminStatus[1..1])

This operation sets the value of the current

administrative status of this particular

MPMPolicyTarget object. This operation takes a

single input parameter, called newStatus, which

defines the new value for the mpmPolAdminStatus

attribute. The allowable values of this input

parameter are defined by the

MPMPolicyAdminStatus enumeration.

getMPMPolicyTargetRole-

Status() : MPMPolicy-

RoleStatus[1..1]

This operation returns the current readiness of this

particular MPMPolicyTarget object to play the role

of a PolicyTarget. This operation takes no input

parameters.

 If the mpmPolicyTargetRoleStatus attribute

does not have a value, then this operation

MUST return an error.

setMPMPolicyTargetRole-

Status(in newStatus :

MPMPolicyRoleStatus[1..1])

This operation sets the value of the

mpmPolicyTarget-RoleStatus attribute of this

particular MPMPolicyTarget object. This operation

takes a single input parameter, called newStatus,

which defines the new value for the

mpmPolicyTargetRoleStatus attribute. The allowable

values of this input parameter are defined by the

MPMPolicyRoleStatus enumeration.

Table 59. Operations of the MPMPolicyTarget Class

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 111

9 MPM Datatypes and Enumerations

This section will list the common data types and enumerations defined for the MPM model only.

9.1 Introduction

The MEF Types additions for the MPM project are defined in a folder labelled “MPM” in the

MEF_Types GitHub project. There are currently eight enumerations and one datatype defined.

9.2 MPM Enumerations

The following Enumerations are defined in the current MPM Model.

9.2.1 MPMPolicyAdminStatus

This is an Enumeration that defines the current administrative status of this MPMPolicy object. It

is used by multiple MPMPolicyObjects to define a consistent set of definitions for administrative

status for each MPMPolicy object that uses it. It is defined in Table 60.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT be

used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT be

used operationally.

2 ENABLED
This literal means that this MPMPolicy object is ENABLED

and can be used operationally.

3 DISABLED

This literal means that this MPMPolicy object is DISABLED

and MUST NOT be used operationally.

 This means that this MPMPolicy object MUST NOT be

used operationally.

4 IN_TEST

This literal indicates that MPMPolicy object is in a special test

mode.

 This means that this MPMPolicy object SHOULD

NOT be used operationally.

Table 60. MPMPolicyAdminStatus Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 112

9.2.2 MPMPolContinuumLevel

This is an Enumeration that defines the current Policy Continuum Level (i.e., level of abstraction)

of this particular MPMPolicy. It is defined in Table 61.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 BUSINESS

This literal indicates that the Policy Continuum Level for

this MPMPolicy is the BUSINESS level. This means that

this MPMPolicy is targeted at end-users, Customers, and

business people (e.g., Product Managers or Business

Analysts).

This group of users typically does NOT have familiarity

with application development or networking details.

3 APP_DEVELOPER

This literal indicates that the Policy Continuum Level for

this MPMPolicy is the APPLICATION DEVELOPER level.

This means that this MPMPolicy is targeted at Application

Developers. This group of users typically does NOT have

familiarity with business or networking details.

4
NETWORK_

ADMIN

This literal indicates that the Policy Continuum Level for

this MPMPolicy is the NETWORK ADMINISTRATOR

level.

This means that this MPMPolicy is for network

administrators (e.g., people technically proficient at

configuring and managing networks). This group of users

typically does NOT have familiarity with business or

application development details.

5 CUSTOM

This literal indicates that the Policy Continuum Level for

this MPMPolicy is a CUSTOM level. This means that this

MPMPolicy is NOT targeted at business, application

development, or network administrator constituencies as

defined in the above literals.

Table 61. MPMPolContinuumLevel Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 113

9.2.3 MPMPolicyDeployStatus

This is an Enumeration that defines whether this MPMPolicy can currently be deployed or not by

the Policy Management System. This enables the policy manager to know which MPMPolicies

are currently deployed or not, and may be useful for the policy execution system for planning the

staging of MPMPolicies. It is defined in Table 62.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 DEPLOYED

This literal means that this MPMPolicy object has been

deployed. The mpmPolAdminStatus class attribute defines

whether this MPMPolicy object is enabled, in test, or

disabled, and in conjunction with this attribute, determines

whether this MPMPolicy can be operationally used or not.

 An MPMPolicy MUST NOT be used operationally

unless the value of this enumeration is 2 and the value

of the MPMAdminStatus enumeration is also 2.

3
READY_TO_BE_

DEPLOYED

This literal indicates that this MPMPolicy object is ready to

be deployed.

 This means that this MPMPolicy object MUST NOT

be used operationally.

4 NOT_DEPLOYED

This literal indicates that this MPMPolicy object has NOT

been deployed.

 This means that this MPMPolicy object MUST NOT

be used operationally.

Table 62. MPMPolicyDeployStatus Enumeration Definition

9.2.4 MPMPolicyDesignStatus

This is an enumeration that defines the design status of this MPMPolicyStructure. It is defined in

Table 63.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 114

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object

MUST NOT be used operationally.

1 INIT

This literal indicates that this object is ready to be

initialized.

 This means that this MPMPolicy object

MUST NOT be used operationally.

2 DESIGN_FINISHED
This literal means that the design of this

MPMPolicyRule has been completed.

3 DESIGN_BEING_MODIFIED

This literal means that the design of this

MPMPolicyRule was complete, but is currently

being modified.

4
DESIGN_

IN_PROCESS

This literal means that the design of this

MPMPolicyRule is in process and has NOT been

completed.

5
DESIGN_NOT_

STARTED

This literal means that the design of this

MPMPolicyRule has NOT started.

Table 63. MPMPolicyDesignStatus Enumeration Definition

9.2.5 MPMPolicyExecStatus

This is an Enumeration that defines the current execution status of this MPMPolicyStructure. It is

defined in Table 64.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT be

used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT be

used operationally.

2

EXECUTED_

WITHOUT_

ERRORS

This literal indicates that this MPMPolicy object has completed

execution without any errors.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 115

3
EXECUTING_IN

_PROCESS

This literal indicates that this MPMPolicy object is currently

executing, but has not yet finished.

4
EXECUTION_

ABORTED

This literal indicates that this MPMPolicy object did not

complete execution; one or more errors occured, and execution

was aborted.

5
EXECUTION_

FAILED

This literal indicates that this MPMPolicy object did not

complete execution due to a failure that stopped execution.

6

EXECUTION_

CONFLICT_

UNRESOLVED

This literal indicates that this MPMPolicy object encountered a

conflict during runtime execution, but no corrective action has

been taken to remedy this conflict.

7

EXECUTION_

CONFLICT_

ROLLBACK

This literal indicates that this MPMPolicy object encountered a

conflict during runtime execution, and that a rollback of its

actions was successfully completed.

8

EXECUTION_

CONFLICT_

ERROR

This literal indicates that this MPMPolicy object encountered a

conflict during runtime execution, and that execution had to be

aborted.

9
EXECUTION_

TIMEOUT

This literal indicates that this MPMPolicy object has exceeded

the allowed time to execute, and was aborted.

10
NOT_EXECUTE

D

This literal indicates that this MPMPolicy object has not yet ben

executed.

Table 64. MPMPolicyExecStatus Enumeration Definition

9.2.6 MPMPolExecFailStrategy

This is an Enumeration that defines what actions, if any, should be taken by this MPMPolicy if it

fails to execute correctly. It is defined in Table 65.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT be

used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT be

used operationally.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 116

2
ROLLBACK_

ALL

This literal indicates that rollback of all actions taken should be

attempted. After that, execution MUST be attempted to be

stopped.

 Execution MUST be attempted to be stopped after the

rollback has finished.

3
ROLLBACK_

SINGLE

This literal indicates that rollback of only the action that failed

should be attempted. After that, execution MUST be attempted

to be stopped.

 Execution MUST be attempted to be stopped after the

rollback has finished.

4 STOP

This literal indicates that execution MUST be attempted to be

stopped WITHOUT trying to rollback any actions that failed.

 Execution MUST be attempted to be stopped as soon as

an error has been detected.

5 IGNORE

This literal indicates that the failure of any action SHOULD be

ignored WITHOUT trying to rollback any actions that failed.

 Execution SHOULD continue even though one or more

errors occurred.

Table 65. MPMPolExecFailStrategy Enumeration Definition

9.2.7 MPMImpPolExecStrategy

This is an Enumeration that defines the current execution strategy of this MPMPolicyStructure.

The execution strategy consists of the order that actions will execute, and whether encountering

an error terminates the process of executing actions or not. It is defined in Table 66.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2
EXECUTE_

FIRST_AND_STOP

This literal indicates that only the first Action should be

executed. The mpmPolExecStatus attribute is then populated

with the result.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 117

3
EXECUTE_

LAST_AND_STOP

This literal indicates that only the last Action should be

executed. The mpmPolExecStatus attribute is then populated

with the result.

4

EXECUTE_HIGH_

PRIORITY_AND_

STOP

This literal indicates that only the highest priority Action

should be executed. The mpmPolExecStatus attribute is then

populated with the result.

 If there is no action with a priority greater than 0, then

ALL Actions SHOULD be executed.

 If multiple Actions all have the same highest priority,

then those Actions MUST all be executed.

5

EXECUTE_ALL_

IN_PRIORITY_

ORDER

This literal indicates that all Actions will be executed in

priority order. The mpmPolExecStatus attribute is then

populated with the result.

 If an error occurs, execution SHOULD continue.

 If multiple Actions all have the same priority, then

those Actions MUST all be executed in priority order.

6

EXECUTE_ALL_

IN_ORDER_

UNTIL_ERROR

This literal indicates that all Actions will be executed in

priority order. The mpmPolExecStatus attribute is then

populated with the result.

 If an error occurs, execution MUST terminate.

 If multiple Actions all have the same priority, then

those Actions MUST all be executed in priority order.

7 EXECUTE_AS_IS

This literal indicates that Action will be executed in the order

that they are contained, without regard to priority. The

mpmPolExecStatus attribute is then populated with the

result.

 If an error occurs, execution MUST terminate.

Table 66. MPMImpPolExecStrategy Enumeration Definition

9.2.8 MPMPolCollectionType

This is an Enumeration that defines the type of collection that this MPMPolicyCollection uses.It

is defined in Table 67.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 118

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 SET

This literal defines the datatype of this MPMPolicyCollection

object to be a set.

 A set is an unordered collection of elements that MUST

NOT have duplicates.

3 BAG

This literal defines the datatype of this MPMPolicyCollection

object to be a bag.

 A bag is an unordered collection of elements that MAY

have duplicates.

4 DICTIONARY

This literal defines the datatype of this MPMPolicyCollection

object to be a dictionary.

A dictionary is a table that associates a key with a value.

 A dictionary MUST NOT have duplicate, null, or

empty keys.

Table 67. MPMPolCollectionType Enumeration Definition

9.2.9 MPMPolCollectionFunction

This is an Enumeration that defines how the objects in this MPMPolicyCollectionFunction are

used in a particular MPMPolicyStatement. It is defined in Table 68.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 119

2
EVENT_

COLLECTION

This literal defines a collection of objects that are to be used

to populate an MPMPolicyStatement that is used in the event

clause for an MPMImperativePolicy.

3
CONDITION_

COLLECTION

This literal defines a collection of objects that are to be used

to populate an MPMPolicyStatement that is used in the

condition clause for an MPMImperativePolicy.

4
ACTION_

COLLECTION

This literal defines a collection of objects that are to be used

to populate an MPMPolicyStatement that is used in the action

clause for an MPMImperativePolicy.

5
LOGIC_

COLLECTION

This literal defines a collection of objects that are to be used

to populate an MPMPolicyStatement that is used in an

MPMDeclarativePolicy.

6
INTENT_

COLLECTION

This literal defines a collection of objects that are to be used

to populate an MPMPolicyStatement that is used in an

MPMIntentPolicy.

Table 68. MPMPolCollectionFunction Enumeration Definition

9.2.10 MPMPolStmtConstrainMechanism

This is an Enumeration that defines the type of constraint mechanism used between a concrete

subclass of MPMPolicyStructure and a concrete subclass of MPMPolicyStatement. It is defined in

Table 69.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 NONE

This literal indicates that NO mechanism is used to constrain

which subclasses of MPMPolicyStatement can be used with

this particular subclass of MPMPolicyStructure.

3
ASSOCIATION_

CLASS

This literal indicates that the MPMPolicyHasMPMPolicy-

StatementDetail association class is used to constrain which

subclasses of MPMPolicyStatement can be used

with this particular subclass of MPMPolicyStructure.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 120

4 OCL

This literal indicates that OCL is used to constrain which

subclasses of MPMPolicyStatement can be used with this

particular subclass of MPMPolicyStructure.

The current version of OCL is 2.4.

5 ALLOY

This literal indicates that the Alloy language is used to

constrain which subclasses of MPMPolicyStatement can be

used with this particular subclass of MPMPolicyStructure.

Alloy is a declarative language that can be used to specify the

structure of a system textually.

6 FOML

This literal indicates that the FOML language is used to

constrain which subclasses of MPMPolicyStatement can be

used with this particular subclass of MPMPolicyStructure.

FOML is a logic rule language that supports object modeling,

analysis, and inference.

Table 69. MPMPolStmtConstrainMechanism Enumeration Definition

9.2.11 MPMAssertionStatementType

This is an Enumeration that defines the set of MPMAssertionClauses that make up this particular

MPMAssertionStatement. It is defined in Table 70.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 CONTRACT

This literal indicates that this MPMAssertionStatement is

made up of a standard set of MPMAssertionClauses (i.e., pre-

condition, post-condition, and invariant). This forms a

software contract.

3 PRE_AND_POST
This literal indicates that this MPMAssertionStatement

contains only pre- and post-condition MPMAssertionClauses.

4
PRE_AND_

INVAR

This literal indicates that this MPMAssertionStatement

contains only pre-condition and Invariant

MPMAssertionClauses.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 121

5
POST_AND_

INVAR

This literal indicates that this MPMAssertionStatement

contains only post-condition and Invariant

MPMAssertionClauses.

6 PRE_ONLY
This literal indicates that this MPMAssertionStatement

contains only pre-condition MPMAssertionClauses.

7 POST_ONLY
This literal indicates that this MPMAssertionStatement

contains only post-condition MPMAssertionClauses.

8 INVAR_ONLY
This literal indicates that this MPMAssertionStatement

contains only Invariant MPMAssertionClauses.

9 OTHER
This literal indicates that this MPMAssertionStatement is

made up of a non-standard set of MPMAssertionClauses.

Table 70. MPMAssertionStatementType Enumeration Definition

9.2.12 MPMPolStmtConflictStatus

This is an Enumeration that defines the types of conflicts that this particular MPMPolicyStatement

has or has had. It is defined in Table 71.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 NONE
This literal indicates that this MPMPolicyStatement has never

had a conflict.

3 RESOLVED
This literal indicates that this MPMPolicyStatement has had

one or more conflicts in the past, but all have been resolved.

4 CONFLICT
This literal indicates that this MPMPolicyStatement currently

has a conflict that has not been resolved.

5
UNABLE_TO_

RESOLVE

This literal indicates that this MPMPolicyStatement has a

conflict that was unable to be resolved.

Table 71. MPMPolStmtConflictStatus Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 122

9.2.13 MPMFormalLogicType

This is an Enumeration that defines the type of logic theory used. It is defined in Table 72.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST

NOT be used operationally.

1 INIT

This literal indicates that this object is ready to be

initialized.

 This means that this MPMPolicy object MUST

NOT be used operationally.

2 PROPOSITIONAL_LOGIC

This literal defines the type of logic used as

propositional logic. This defines the manipulation of

a set of propositions, possibly with logical

connectives, to prove or disprove a conclusion.

Propositional logic does not deal with logical

relationships and properties that involve the parts of a

statement smaller than the statement itself.

3 MODAL_LOGIC

This literal defines the type of logic used as modal

logic.

This defines logic theories that deal with necessity

and possibility.

4
DEONTIC_

LOGIC

This literal defines the type of logic used as deontic

logic.

This defines logic theories that deal with obligation,

permission, and related concepts.

5
ALETHIC_

LOGIC

This literal defines the type of logic used as alethic

logic.

This defines logic theories that deal with logical

necessity, possibility, or impossibility.

6
EPISTEMIC_

LOGIC

This literal defines the type of logic used as epistemic

logic.

This defines logic theories that deal with reasoning

about knowledge.

7
DOXASTIC_

LOGIC

This literal defines the type of logic used as doxastic

logic.

This defines logic theories that deal with reasoning

about beliefs.

8
TEMPORAL_

LOGIC

This literal defines the type of logic used as temporal

logic.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 123

This defines logic theories that deal with propositions

qualified in terms of time.

9
DESCRIPTION_

LOGIC

This literal defines the type of logic used as

description logic.

This defines families of logic theories that are subsets

of first-order logic. They are typically decidable.

10
FIRST_ORDER_

LOGIC

This literal defines the type of logic used as first

order logic.

This defines logic theories that are an extension of

propositional logic to include predicates and

quantification.

11
HIGHER_

ORDER_LOGIC

This literal defines the type of logic used as second

and higher order logic.

This defines an extension of first order logic to

include quantification over relations.

12 FUZZY_LOGIC

This literal defines the type of logic used as fuzzy

logic.

This defines a family of many-values logic theories in

which the truth values may be any real number

between 0 and 1 inclusive. This models partial truths,

or confidence in something being true.

Table 72. MPMFormalLogicType Enumeration Definition

9.2.14 MPMIntentTranslationStatus

This is an Enumeration that defines the current status of translating an MPMIntentPolicy. It is

defined in Table 73.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 SUCCESS

This literal indicates that the translation of the

MPMIntentPolicy content was successful.

 This means that this MPMPolicy object MAY be used

operationally.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 124

3 IN_PROGRESS

This literal indicates that the translation of the

MPMIntentPolicy content is currently being done.

 This means that this MPMPolicy object MUST NOT

be used operationally.

4 IN_TEST

This literal indicates that the translation of the

MPMIntentPolicy content is in a special test mode, and is

currently being tested.

 This means that this MPMPolicy object SHOULD

NOT be used operationally.

5 FAILED

This literal indicates that the translation of the

MPMIntentPolicy content has failed.

 This means that this MPMPolicy object MUST NOT

be used operationally.

Table 73. MPMIntentTranslationStatus Enumeration Definition

9.2.15 MPMPolCompDecConstraint

This is an Enumeration that defines the language used, if any, that this

MPMPolicyComponentDecorator subclass uses to constrain objects that it is wrapping. It is

defined in Table 74.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 NONE
This literal means that NO CONSTRAINTS are applied by

this MPMPolicyComponentDecorator subclass.

3 OCL2.4+

This literal indicates that the decorated object is constrained

using OCL version 2.4 (the current version as of this

standard) and higher.

4 OCL2.3-
This literal indicates that the decorated object is constrained

using OCL version 2.0 - 2.3.

5 OCL1.x
This literal indicates that the decorated object is constrained

using OCL version 1.x.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 125

6 QVT_REL
This literal indicates that the decorated object is constrained

using the QVT Relations Language.

7 QVT_OP
This literal indicates that the decorated object is constrained

using the QVT Operational Language.

8 ALLOY

This literal indicates that the decorated object is constrained

using the Alloy Language.

Alloy is a language for describing constraints, and uses a

SAT solver to guarantee correctness.

9 ASCII

This literal indicates that the decorated object is constrained

using ASCII text (as instructons).

This enumeration is NOT recommended (since it is informal,

and hence, not verifiable), but is included for completeness.

 This enumeration SHOULD NOT be used.

Table 74. MPMPolCompDecConstraint Enumeration Definition

9.2.16 MPMPolCompDecWrap

This is an Enumeration that defines if this decorated object should be wrapped before and/or after

the wrapped object is executed. It is defined in Table 75.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 BEFORE
This literal indicates that this decorated object should be

applied BEFORE the wrapped object is executed.

3 AFTER
This literal indicates that this decorated object should be

applied AFTER the wrapped object is executed.

4 BOTH

This literal indicates that this decorated object should be

applied BEFORE AND AFTER the wrapped object is

executed.

Table 75. MPMPolCompDecWrap Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 126

9.2.17 MPMPolTargetRoleStatus

This is an Enumeration that defines the current readiness of this particular MPMPolicyTarget

object to take on the PolicyTargetRole. It is defined in Table 76.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 READY
This literal indicates that this MPMPolicyTarget is able to

take on the role of being a PolicyTarget.

3 NOT_READY
This literal indicates that this MPMPolicyTarget is NOT able

to take on the role of being a PolicyTarget.

4 IN_PROGRESS

This literal indicates that this MPMPolicyTarget is currently

preparing itself to be able to take on the role of being a

PolicyTarget.

5 IN_TEST

This literal indicates that this MPMPolicyTarget is currently

in a special test mode.

 This MPMPolicyTarget SHOULD NOT be used

operationally.

Table 76. MPMPolTargetRoleStatus Enumeration Definition

9.2.18 MPMPolOperatorType

This is an Enumeration that defines the type of MPMPolicyOperator that this current object

instance is defined as. It is defined in Table 77.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 127

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 GREATER_THAN
This literal defines this MPMPolicyOperator as the ‘greater

than’ operator.

3
GREATER_THAN

_OR_EQUAL_TO

This literal defines this MPMPolicyOperator as the ‘greater

than or equal to’ operator.

4 LESS_THAN
This literal defines this MPMPolicyOperator as the ‘less than’

operator.

5
LESS_THAN_OR

EQUAL_TO

This literal defines this MPMPolicyOperator as the ‘less than

or equal to’ operator.

6 EQUAL_TO
This literal defines this MPMPolicyOperator as the ‘equal to’

operator.

7 IN
This literal defines this MPMPolicyOperator as the ‘IN’

operator.

8 SET
This literal defines this MPMPolicyOperator as the ‘SET’

operator.

9 CLEAR
This literal defines this MPMPolicyOperator as the ‘CLEAR’

operator.

10 BETWEEN
This literal defines this MPMPolicyOperator as the

‘BETWEEN than’ operator.

11 REGEX_PERL
This literal defines this MPMPolicyOperator as a regular

expression operator that is compatible with PERL.

12
REGEX_

POSIX_BRE

This literal defines this MPMPolicyOperator as a regular

expression operator that is compatible with POSIX Basic

Regular Expressions.

13
REGEX_

POSIX_ERE

This literal defines this MPMPolicyOperator as a regular

expression operator that is compatible with POSIX Extended

Regular Expressions.

Table 77. MPMPolOperatorType Enumeration Definition

9.2.19 MPMPolValueType

This is an Enumeration that defines the datatype of certain class attributes (e.g.,

mpmPolValueContent, mpmPolicyEventEncoding, mpmPolicyConditionEncoding,

mpmPolicyActionEncoding, and mpmPolicyCollectionEncoding). It is defined in Table 78.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 128

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT

be used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT

be used operationally.

2 STRING
This literal indicates that the datatype of this attribute is a

STRING.

3 INTEGER
This literal indicates that the datatype of this attribute is an

INTEGER.

4 BOOLEAN
This literal indicates that the datatype of this attribute is a

Boolean.

5 FLOAT
This literal indicates that the datatype of this attribute is a

FLOATING-POINT number.

6 DATE_TIME
This literal indicates that the datatype of this attribute is a

DateTime.

7 GUID
This literal indicates that the datatype of this attribute is a

Globally Unique ID (GUID).

8 UUID
This literal indicates that the datatype of this attribute is a

Universally Unique ID (UUID).

9 URI
This literal indicates that the datatype of this attribute is a

Universal Resource Identifier (URI).

10 DN
This literal indicates that the datatype of this attribute is a

Distinguished Name.

11 FQDN
This literal indicates that the datatype of this attribute is a

Fully Qualified Domain Name (FQDN).

12 FQPN
This literal indicates that the datatype of this attribute is a

Fully Qualified Path Name (FQPN).

13 NULL
This literal indicates that the datatype of this attribute is a

NULL. This is used with the NULL object pattern.

Table 78. MPMPolValueType Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 129

9.3 MPM Datatypes

The following Datatypes are defined in the current MPM Model.

9.3.1 MPMEncodingType

This is a custom datatype that defines the type of encoding used as part of the

MPMPolicyObjectID. It is defined in Table 79.

Enum

Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

 This means that this MPMPolicy object MUST NOT be

used operationally.

1 INIT

This literal indicates that this object is ready to be initialized.

 This means that this MPMPolicy object MUST NOT be

used operationally.

2 TEXT This literal defines the encoding to be ASCII TEXT.

3 XML This literal defines the encoding to be XML.

4 YANG This literal defines the encoding to be YANG.

5 primaryKey This literal defines the encoding to be a primary key.

6 foreignKey This literal defines the encoding to be a foreign key.

7 GUID
This literal defines the encoding to be a Globally Unique

Identifier.

8 UUID This literal defines the encoding to be a Universally Unique ID.

9 URI
This literal defines the encoding to be a Uniform Resource

Identifier.

10 FQDN
This literal defines the encoding to be a Fully Qualified

Domain Name.

11 FQPN
This literal This literal defines the encoding to be a Fully

Qualified Path Name.

12 stringInstanceID
This literal defines the encoding to be the canonical

representation, in ASCII, of an instance ID of this object.

Table 79. AdminState Enumeration Definition

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 130

10 References

[1] MEF, “Lifecycle Service Orchestration: Reference Architecture and Framework”,

MEF 55.1, January 2021

[2] MEF, “MEF Core Model (MCM)”, MEF 78.1, July 2020

[3] Liskov, B.H., Wing, J.M., “A Behavioral Notion of subtyping”, ACM Transactions on

Programming languages and Systems 16 (6): 1811 - 1841, 1994

[4] Martin, R.C., "Agile Software Development, Principles, Patterns, and Practices",

Prentice-Hall, 2002, ISBN: 0-13-597444-5

[5] Meyer, B., "Object-Oriented Software Construction”, Prentice Hall, second edition,

1997 ISBN 0-13-629155-4

[6] Gamma, E., Helm, R. Johnson, R., Vlissides, J., “Design Patterns:

Elements of Reusable Object-Oriented Software”, Addison-Wesley, Nov, 1994.

ISBN 978-0201633610

[7] Bäumer, D. Riehle, W. Siberski, M. Wulf, “The Role Object Pattern”, Proceedings of

the 1997 Conference on Object-Oriented Programming Systems, Languages and

Applications (OOPSLA '97), ACM Press, 1997, Page 218-228

[8] Riehle, D., “Composite Design Patterns”, Proceedings of the 1997 Conference on

Object-Oriented Programming Systems, Languages and Applications (OOPSLA '97),

ACM Press, 1997, Page 218-228

[9] Schmidt, D.C., “Model-Driven Engineering”, IEEE Computer, 2006

[10] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels”, BCP 14,

RFC 2119, March 1997

[11] Internet Engineering Task Force RFC 8174, “Ambiguity of Uppercase vs Lowercase in

RFC 2119 Key Words”, May 2017

[12] Object Management Group, OMG Unified Modeling Language TM (OMG UML),

Version 2.5.1, December 2017.

[13] J. Strassner, “Policy-Based Network Management”, Morgan Kaufman, Sep 2003.

ISBN 978-1558608597

[14] https://plato.stanford.edu/entries/logic-deontic/

[15] https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/

[16] https://plato.stanford.edu/entries/logic-modal/

https://plato.stanford.edu/entries/logic-deontic/
https://users.ece.cmu.edu/~koopman/des_s99/formal_methods/
https://plato.stanford.edu/entries/logic-modal/

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 131

[17] Strassner, J., Agoulmine, N., Lehtihet, E.: "FOCALE - A Novel Autonomic

Networking Architecture", ITSSA Journal 3(1), 64-79, 2007.

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 132

Appendix A Exemplary MPMIntentPolicy Language Description

This is an example DSL (Domain Specific Language) that provides an intent program to connect

multiple SD-WAN users between multiple sites.

// Create an SD-WAN between multiple Subscriber Sites – BUSINESS USER VERSION

// The SD-WAN Edge is situated between the SD-WAN UNI, on its Subscriber side, and the

// UCS UNIs of one or more UCSs on its network side. The SD-WAN Edge receives ingress

// IP Packets over the SD-WAN UNI; determines how they should be handled according to

// routing information, applicable policies, other service attributes, and information about the

// UCSs; and if appropriate, forwards them over one of the available UCS UNIs. Similarly, it

// receives packets over the UCS UNIs and determines how to handle them, including

// forwarding them on over the SD-WAN UNI to the Subscriber Network, if appropriate. The

// SD-WAN Edge thus implements all of the data plane functionality of the SD-WAN service

// that is not provided by a UCS.

// RED: BEGIN, END for business; app dev DSL will use this for control structures as well

// BLUE: KEYWORDS

// GREEN: INPUT FROM USER

// BLACK: comments

 MEF Policy Driven Orchestration

MEF 95 © MEF Forum 2021. Any reproduction of this document, or any portion thereof, shall contain the following

statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify

any of the information contained herein.

Page 133

BEGIN // could be a space and then DEFINE on same line

 DEFINE SD-WAN EDGES “A”, “B”, “VPC” // this creates the associated sites and UNIs

END

// Define the SWVC Connectivity

BEGIN

 DEFINE CONNECTIVITY // connects multiple SD-WAN Edges

 USING SERVICE PROVIDER // under control of the Service Provider

 BEGIN DEFINE UNDERLAY “2” // defines UCS2

 “A” CONNECTS TO “VPC” // TVC connects Edges A and VPC

 “VPC” CONNECTS TO “B” // TVC connects Edges VPC and B

 “B” CONNECTS TO “A” // TVC connects Edges B and A

 END

END

BEGIN DEFINE CONNECTIVITY

 USING INTERNET // Each TVC appears twice since this is a

 // single-ended service

 BEGIN DEFINE UNDERLAY “1” // Internet used as an underlay by ISP1

 “B” CONNECTS TO INTERNET BREAKOUT // Internet Breakout (single-ended

 // service, only appears once)

 “B” CONNECTS TO “A” // TVC between B and A

 END

 BEGIN DEFINE UNDERLAY “3” // Internet used as an underlay by ISP2

 “A” CONNECTS TO “B” // TVC between A and B, 2nd occurrence

 // due to Internet

 END

END

	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Compliance Levels
	5 Numerical Prefix Conventions
	6 Introduction
	7 Introduction to Policy Management and Orchestration
	7.1 Controlling Behavior Using Policies
	7.1.1 Groups of Policies and the Use of Roles
	7.1.2 Can Multiple Policies Apply to a Single Object?
	7.1.3 Policy Subjects and Targets
	7.1.4 Authorization vs. Obligation Policies

	7.2 The Policy Continuum
	7.3 Proving the Correctness of a Policy
	7.4 Policy Usage in the MEF LSO RA

	8 MEF Policy Model (MPM)
	8.1 The Purpose of a Policy Model
	8.2 How Policy is Modeled
	8.3 Naming Rules
	8.4 Overview of the MCM
	8.4.1 The Top Portion of the MCM
	8.4.2 The Use of Metadata
	8.4.3 MCM Compliance

	8.5 Design Approach of the MPM
	8.5.1 PolicyContainer
	8.5.2 Types of Policies
	8.5.2.1 Imperative Policies
	8.5.2.2 Declarative Policies
	8.5.2.3 Intent Policies

	8.6 MCMPolicyObject
	8.7 The MPMPolicyStructure Hierarchy
	8.7.1 MPMPolicyStructure Class Definition
	8.7.2 MPMPolicyStructure Relationships
	8.7.2.1 The MPMPolicyHasMPMPolicySource Aggregation
	8.7.2.2 The MPMPolicyHasMPMPolicyTarget Aggregation
	8.7.2.3 The MPMPolicyHasMPMPolicyStatement Aggregation

	8.7.3 MPMPolicyStructure Subclasses
	8.7.3.1 MPMImperativePolicy Class Definition
	8.7.3.1.1 MPMECAPolicy Class Definition
	8.7.3.1.2 MPMCommandPolicyRule Class Definition

	8.7.3.2 MPMDeclarativePolicy Class Definition
	8.7.3.3 MPMIntentPolicy Class Definition

	8.8 MPMPolicyComponentStructure Class Hierarchy
	8.8.1 MPMPolicyComponentStructure Class Definition
	8.8.2 MPMPolicyComponentStructure Relationships
	8.8.3 MPMPolicyComponentStructure Subclasses: MPMPolicyStatements
	8.8.3.1 MPMPolicyStatement Class Definition
	8.8.3.1.1 The MPMPolicyHasMPMPolicyStatement Aggregation
	8.8.3.1.2 The MPMStatementHasMPMPolicyClause Aggregation

	8.8.3.2 MPMBooleanStatement Class Definition
	8.8.3.3 MPMAssertionStatement Class Definition
	8.8.3.4 MPMEncodedStatement Class Definition
	8.8.3.5 MPMTheorem Class Definition
	8.8.3.6 MPMAxiom Class Definition

	8.8.4 MPMPolicyComponentStructure Subclasses: MPMPolicyClause
	8.8.4.1 MPMAssertionClause Class Definition
	8.8.4.2 MPMBooleanClause Class Definition
	8.8.4.3 MPMLogicClause Class Definition
	8.8.4.3.1 MPMPremiseClause Class Definition
	8.8.4.3.2 MPMConclusionClause Class Definition

	8.8.5 MPMPolicyComponentStructure Subclasses: MPMPolicyComponentDecorators
	8.8.5.1 MPMPolicyComponentDecorator Class Definition
	8.8.5.2 MPMPolicyTerm Hierarchy
	8.8.5.2.1 MPMPolicyVariable Class Definition
	8.8.5.2.2 MPMPolicyOperator Class Definition
	8.8.5.2.3 MPMPolicyValue Class Definition

	8.8.5.3 MPMECAObject Hierarchy
	8.8.5.3.1 MPMECAObject
	8.8.5.3.2 MPMPolicyEvent Class Definition
	8.8.5.3.3 MPMPolicyCondition Class Definition
	8.8.5.3.4 MPMPolicyAction Class Definition

	8.8.5.4 MPMPolicyCollection

	8.9 MPMPolicySource
	8.10 MPMPolicyTarget

	9 MPM Datatypes and Enumerations
	9.1 Introduction
	9.2 MPM Enumerations
	9.2.1 MPMPolicyAdminStatus
	9.2.2 MPMPolContinuumLevel
	9.2.3 MPMPolicyDeployStatus
	9.2.4 MPMPolicyDesignStatus
	9.2.5 MPMPolicyExecStatus
	9.2.6 MPMPolExecFailStrategy
	9.2.7 MPMImpPolExecStrategy
	9.2.8 MPMPolCollectionType
	9.2.9 MPMPolCollectionFunction
	9.2.10 MPMPolStmtConstrainMechanism
	9.2.11 MPMAssertionStatementType
	9.2.12 MPMPolStmtConflictStatus
	9.2.13 MPMFormalLogicType
	9.2.14 MPMIntentTranslationStatus
	9.2.15 MPMPolCompDecConstraint
	9.2.16 MPMPolCompDecWrap
	9.2.17 MPMPolTargetRoleStatus
	9.2.18 MPMPolOperatorType
	9.2.19 MPMPolValueType

	9.3 MPM Datatypes
	9.3.1 MPMEncodingType

	10 References
	10 References
	10 References
	10 References

